
REMOVAL OF NOISE FROM SPEECH USING THE DUAL EKF ALGORITHM

Eric A. Wan and Alex T. Nelson

Oregon Graduate Institute of Science & Technology
Dept. of Electrical and Computer Engineering, P.O. Box 91000, Portland, OR 97291

ABSTRACT

Noise reduction for speech signals has applications ranging from
speech enhancement for cellular communications, to front ends for
speech recognition systems. A neural network based time-domain
method called Dual Extended Kalman Filtering (Dual EKF) is pre-
sented for removing nonstationary and colored noise from speech.
This paperdescribes the algorithm and provides a set of experimen-
tal results.

1. INTRODUCTION

While there exists a broad range of traditional speech enhancement
techniques (e.g., spectral subtraction, signal-subspace embedding,
time-domain iterative approaches,etc. [4]), suchmethods frequently
result in audible distortion of the signal, and are far from satisfac-
tory in real-world noisy environments. Recentneuralnetwork based
filtering methods utilize data sets where the clean speech is avail-
able as a target signal for training. These methods are often effec-
tive within the training set, but tend to generalize poorly for ac-
tual sources with varying signal and noise levels (a review of neu-
ral based approaches can be found in [16]). Furthermore, the net-
work models in these methods do not fully take into account the
nonstationary nature of speech. In the approach presented here, we
assume the availability of only the noisy signal. Effectively, a se-
quence of neural networks is trained on the specific noisy speech
signal of interest, resulting in a nonstationary model which can be
used to remove noise from the given signal.

1.1. Nonlinear Speech Model

A noisy speech signal y(k) can be accurately modeled as a non-
linear autoregression with both process and additive observation
noise:

x(k) = f(x(k� 1); : : : ; x(k �M);w) + v(k) (1)

y(k) = x(k) + n(k); (2)

wherex(k) corresponds to the true underlying speech signal driven
by process noise v(k), and f(�) is a nonlinear function of past val-
ues of x(k) parameterized byw. The speech is only assumed to be
stationary over short segments, with each segment having a differ-
ent model. The available observation is y(k), which contains addi-
tive noise n(k). If f(�) is linear, this reduces to the classic Linear
Predictive Coding (LPC) model of speech.

The optimal estimator given the noisy observations y(k) =
fy(k); y(k�1); : : : ; y(0)g is E[x(k)jy(k)]. The most direct way
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to approximate this conditional expectation would be to train on a
set of clean data in which the truex(k)may be used as the target to a
neural network. Our assumption, however, is that the clean speech
is never available; the goal is to estimate x(k) itself from the noisy
measurements y(k) alone.

In order to solve this problem, we assume that f(�; �) is in the
class of feedforward neural network models, and compute the dual
estimation of both states x̂ and weights ŵ based on a Kalman fil-
tering approach. In this paper we provide a basic description of the
algorithm, followed by a discussion of experimental results.

2. DUAL EXTENDED KALMAN FILTERING

By formulating the dual estimation problem in a state-space frame-
work, we can use Kalman filtering methods to perform the esti-
mation in an efficient, recursive manner. At each time point, the
Kalman filter provides an optimal estimation by combining a prior
prediction with a new observation. Connor et al.[3] proposed using
an extended Kalman filter with a neural network to perform state
estimation alone. Puskorious and Feldkamp [13] and others have
posed the weight estimation in a state-space framework to allow
for efficient Kalman training of a neural network. In prior work, we
extended these ideas to include the dual Kalman estimation of both
states and weights for efficient maximum-likelihood optimization
for robustnonlinearprediction, estimation, and smoothing [14]. The
work presented here develops these ideas in the context of speech
processing.

To apply the EKF, we first put the autoregression of Equation 1
and 2 in state-space form:

x(k) = F [x(k � 1)] + Bv(k) (3)

y(k) = Cx(k) + n(k); (4)

where

x(k) =

2
6664
x(k)
x(k � 1)
...
x(k �M + 1)

3
7775 ; B =

2
6664

1
0
...
0

3
7775 ; (5)

F [x(k)] =

2
6664
f(x(k); : : : ; x(k�M + 1);w)
x(k)
...
x(k �M + 2)

3
7775 ;

and C = BT . If the model is linear, then f(x(k)) takes the form
w
T
x(k), and F [x(k)] can be written as Ax(k), where A is a ma-

trix in controllable canonical form. We initially assume the noise
terms v(k) and n(k) are white with known variances �2v and �2n ,
respectively.



2.1. State Estimation

For a linear model with known parameters, the Kalman filter (KF)
algorithm can be readily used to estimate the states [8]. At each
time step, the filter computes the linear least squares estimate x̂(k)
and prediction x̂�(k), as well as their error covariances,Px̂(k) and
P
�

x̂
(k). In the linear case with Gaussianstatistics, the estimates are

the minimum mean square estimates. With no prior information on
x, they reduce to the maximum-likelihood estimates.

When the model is nonlinear, the KF cannotbe applied directly,
but requires a linearization of the nonlinear model at the each time
step. The resulting algorithm is called the extended Kalman filter
(EKF), and effectively approximates the nonlinear function with a
time-varying linear one. The EKF algorithm is as follows:

x̂
�(k) = F [x̂(k� 1);w] (6)

P
�

x̂
(k) = A(k)Px̂(k � 1)AT (k) + B�

2

vB
T (7)

where A(k) =
@F [x̂;w]

@x̂(k � 1)
(8)

K(k) = P
�

x̂
(k)CT (CP�

x̂
(k)CT + �

2

n)
�1 (9)

Px̂(k) = (I �K(k)C)P�
x̂
(k) (10)

x̂(k) = x̂
�(k) +K(k)(y(k) �Cx̂

�(k)): (11)

Note that the derivative in Equation 8 corresponds to the lineariza-
tion of the neural network at the current operation point. This can
be found by a single application of standard backpropagation.

When the weights w are not available, they must be replaced
by an estimate, ŵ.

2.2. Weight Estimation

Because the model for the speech is not known, the standard EKF
algorithm cannot be applied directly. We approach this problem by
constructing a separate state-space formulation for the underlying
weights as follows:

w(k) = w(k� 1) (12)

y(k) = f(x(k� 1);w(k)) + v(k) + n(k); (13)

where the state transition is simply an identity matrix, and the neu-
ral network f(x(k � 1);w(k)) plays the role of a time-varying
nonlinear observation on w. These state-space equations for the
weights allow us to estimate them with a second EKF:

ŵ
�(k) = ŵ(k� 1) (14)

P
�

ŵ
(k) = Pŵ(k � 1) (15)

Kŵ(k) = P
�

ŵ
(k)HT (k)[H(k)P�

ŵ
(k)HT (k) + �
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v]
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(16)

Pŵ(k) = (I �Kŵ(k)H(k))P�
ŵ
(k) (17)

where H(k) =
@x�(k)

@ŵ
(18)

ŵ(k) = ŵ
�(k) +Kŵ(k)(y(k)� x

�(k)): (19)

The use of the EKF for weight estimation can be related to Re-
cursive LeastSquares (RLS), and thus represents an efficient second-
order on-line optimization method. Note that when x is not avail-
able, it must be replaced in the weight filter by an estimate, x̂. A
maximum-likelihood interpretation of the EKF detailing the impli-
cations on the use of x versus x̂ is given in [12].
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Figure 1: The Dual Extend Kalman Filter. EKF1 and EKF2
represent the filters for the states and the weights, respec-
tively.

The linearization of the network in Equation 18 can be com-
puted as a dynamic derivative (or full partial derivative) [17] to ac-
count for the recurrent nature of the state-estimation filter, includ-
ing the dependence of the Kalman gainK(k) on the weights. Un-
fortunately, the calculation of these derivatives is computationally
expensive. Alternatively, this can be avoided completely by ignor-
ing the dependence of x̂(k� 1) on ŵ in Equation 6, resulting in a
static linearization of the network. Early results on dynamic deriva-
tives do not indicate performance advantagesover the static deriva-
tive. Thus, we report results only for static linearization in this pa-
per.

2.3. Dual State and Weight Estimation

The essence of the Dual EKF algorithm is to run the state EKF and
weight EKF in parallel (see Figure 1), simultaneously updating es-
timates of x(k) andw. At each time step, the current estimate of x
is used by the weight filter, and the current estimate ofw is used by
the state filter. For finite data sets, the algorithm is run iteratively
over the data until the weights converge.

This approach to dual estimation can be justified within a max-
imum-likelihood framework and can also be related to the Expecta-
tion Maximization (EM) algorithm. The approach is also related to
work done by Nelson [11] in the linear case, and to Matthews’ neu-
ral approach [10] to the recursive prediction error algorithm [6]. In
the speech literature, the method is most closely related to Lim and
Oppenheim’s approach to fitting LPC models to degraded speech
[9]. It also relates to Ephraim’s model-based approach [5], but uses
nonlinear estimation to fit the given data instead of using a fixed
number of prespecified linear models.

3. EXPERIMENTS

3.1. Nonstationary White Noise

To process noisy speech, the method is applied to successive 64ms
windows of the signal (512 points at 8kHz sampling), with a new
window starting every 8ms (64 points). A normalized Hamming
window is used to emphasize data in the center of the window, and
deemphasize data in the periphery. The standard EKF equations
are also modified to reflect this windowing in the weight estima-
tion. The result of applying the Dual EKF to a speech signal (se-
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Figure 2: Cleaning noisy speech with the Dual EKF. The
TIMIT sentence was approximately 33,000 points (4 sec.)
long. Nonstationary white noise was generated artificially
and added to the speech to create the noisy signal y.

lected from the TIMIT database) corrupted with simulated nonsta-
tionary bursting noise is shown in Figure 2. Feedforward networks
with 10 inputs, 4 hidden units, and 1 output were used. Weights
typically converged in less than 20 epochs. The results in the fig-
ure were computed assuming both �2v and �2n were known. The
average SNR is improved by 9.94 dB, with little resultant distor-
tion. When �2n and �2v are estimated using only the noisy signal,
an SNR improvement of 8.50 dB is achieved. In comparison, the
“state-of-the-art” technique of spectral subtraction [1] achieves an
SNR improvement of only 1.26 dB.

3.2. Colored Noise

For most real-world speechapplications, we cannotassumethe noise
is white. For colored noise, the state-space equations 3 and 4 need
to be adjusted before Kalman filtering techniques can be employed.
Specifically, the measurement noise process is given its own state-
space equations,

n(k) = Ann(k � 1) +Bnvn(k) (20)

n(k) = Cnn(k); (21)

where n(k) is a vector of lagged values of n(k), vn(k) is white
noise,An is a simple state transition matrix in controllable canoni-
cal form, andBn andCn are of the same form asB andC given in
Equation 5. Note that this is equivalent to an autoregressive model
of the colored noise, which may be fit from a small section of the
noisy signal where speech is not present.

With this formulation for the colored noise, it is straightfor-
ward to augmentboth the statex(k) and the weightw(k)withn(k),
and write down combined state equations. Specifically,Equations 3
and 4 are replaced by:�
x(k)
n(k)

�
=

�
F [x(k � 1)]
Ann(k � 1)

�
+

�
B 0
0 Bn

��
v(k)
vn(k)

�
;

y(k) = [C Cn]

�
x(k)
n(k)

�
; (22)

and Equations 12 and 13 are replaced by:�
w(k)
n(k)

�
=

�
I 0
0 An

� �
w(k� 1)
n(k � 1)

�
+

�
0
Bn

�
vn(k);

y(k) = f(x(k � 1);w(k)) + Cnn(k) + v(k): (23)

The noise processes in these state-equations are now white, and the
Dual EKF algorithm can be used to estimate the signal. Note that
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Figure 3: Removing cellular colored noise with the Dual EKF.
Initial SNR is -0.16 dB, final SNR is 5.60 dB.
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Figure 4: Removing pink noise with the Dual EKF. Initial SNR
is 10 dB, final SNR is 13.87 dB.

the colored noise explicitly affects not only the state estimation, but
also the weight estimation.

An actual recording of highway noise through a cellular phone
was added to a speech signal to produce the data shown in Fig-
ure 3 (3,500 points). Figure 4 shows a similar experiment with pink
noise added (spectrograms shown in Figure 5). In both cases, the
noise model An and process noise variances �2v and �2vn were as-
sumed known (i.e., modeled using knowledge of x(k) and n(k)).
Experiments were also run with estimated values using only the
noisy speech, as described in the next section. Table 1 summarizes
the results for several different initial SNR levels. Spectral subtrac-
tion results are included for comparison1.

3.3. Estimating Noise Variances

In the implementation of the Dual EKF, it is assumed that the vari-
ances of v(k) and n(k) (or the SNR) are known quantities. As-
suming stationarity of the additive noise, the noise variance �2n (or
its full autocorrelation for determining An) may be estimated from
segments of the data y(k) that do not contain speech. Alternative
methods for tracking nonstationary noise are given in [7, 2, 15].

To estimate the process noise variance �2v (assuming an LPC
model for the signal), Lim and Oppenheim [9] used an expression
for the inverse Fourier transform of the signal power (which is a
function of�2v). We have developedan alternative approachby not-
ing that the process noise variance �2v can be estimated directly by
considering the relationship between the residual AR prediction er-
ror for clean and noisy speech [15].

All these approaches,however, are relatively “ad-hoc”, and es-
timating the noise variances remains a critical area for future work.
Our current direction is to treat �2v and �2n as additional parame-
ters which may be optimized within the Kalman and maximum-
likelihood framework.

1The authors would like to thank Rick Peterson for his assistance with
the spectral subtraction simulations.
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Figure 5: Spectrograms illustrating removal of pink noise with
the Dual EKF.

4. CONCLUSION AND FUTURE WORK

We have presented the Dual EKF algorithm with preliminary re-
sults on its application to speech enhancement in the presence of
both nonstationary and colored noise. Initial results compare favor-
ably to current state-of-the-art techniques. However, future work
must involve more substantial evaluations based on both objective
and subjective criteria. In addition, future algorithmic work will
include alternative approaches to variance estimation, as well as
the coupling of error statistics, windowing aspects, recurrent train-
ing implications, forward-backward methods for smoothing, and
issues relating to maximum-likelihood estimation and the EM ap-
proach.
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