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ABSTRACT

This paper studies linear shift-invariant inverse problems arising
in photon-limited imaging. The problem we consider is the re-
covery of an intensity image from a distorted version degraded
with Poisson noise. This problem arises in medical and astronom-
ical imaging. It is shown that the wavelet-vaguelette decomposi-
tion (WVD) can provide much better estimates of the underlying
intensity compared to classical frequency domain methods. The
paper combines recently developed wavelet-based filtering tech-
niques for photon imaging with new results in WVD methods for
inverse problems. Furthermore, we show that the WVD can be
interpreted as a prefiltered wavelet transform, and that it can be
very efficiently computed. The new method is applied to nuclear
medicine imaging.

1. INTRODUCTION

1.1. LSI Inverse Problems in Photon-Limited Imaging

Linear shift-invariant (LSI) inverse problems arise in many imag-
ing applications. For example, in nuclear medicine imaging, cam-
era collimators introduce a distortion that is typically modeled as
LSI [1, pp. 157-162]. Similar problems arise in many optical
imaging systems [2]. The general form of the discrete inverse
problem considered in this paper is

c � PoissonfK �g (1)

wherec is the2M � 2M observed count image whose distribution
is Poisson with intensityK �. K is a known circular convolu-
tion operator,� is the unknown intensity image of interest which
we also regard as a discrete2M � 2M image. All quantities are
real-valued. The objective is to recover the� from the countsc.
Throughout the paper,N = (2M )2 is the number of pixels in the
image.

Many methods have been proposed for recovering� from c

(e.g., [2, 3]). In this paper, we develop a new method based on
two recent developments in wavelet-based signal estimation; the
wavelet-vaguelette decomposition (WVD) [4] and wavelet-domain
filters for photon imaging [5]. Previously proposed WVD methods
were derived under the assumption of Gaussian noise [4, 6]. We
develop a new WVD method specifically designed to handle Pois-
son noise. We apply the new method to nuclear medicine imaging,
and compare its performance to that of an existing method rou-
tinely used in practice.
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1.2. Classical Frequency-Domain Solutions

One solution to the inverse problem is to takec as an estimate of
K �, and then, assumingK is invertible, form the estimate of�

b� = K
�1
c (2)

Note thatc is an unbiased estimator ofK �, and thereforeb� is an
unbiased estimator of�. However, the problem with this solution
is that the inversion may result in excessive noise amplification and
unacceptable estimator variance.

The reason for this is easily seen by expanding the operatorK

in its eigendecomposition. SinceK is a circular convolution op-
erator its eigenvectorsfeng are the 2-d discrete Fourier transform
(DFT) vectors. Letf�ng denote the eigenvalues ofK. Expanding
(2) in terms of the eigendecomposition ofK we have

b� =
X
n

��1n hen; ci en (3)

wherehen; ci denotes the inner product betweenc anden.
The variance of each term in the expansion is computed as fol-

lows. Because the data are Poisson distributed and since the mag-
nitude of each element in the DFT vector is a constant (1=

p
N ),

the variance of each inner producthen; ci is a constant�2 that is
proportional to the sum of all elements inK� [5]. Therefore the
variance of then-th term in (3) is��2n �2. This shows that the
Poisson noise is greatly amplified in the components of the solu-
tion associated with small eigenvalues of the operatorK.

To reduce noise amplification we can employ awindowed sin-
gular value decomposition (SVD) reconstruction

�� =

N�1X
n=0

!n�
�1
n hen; ci en (4)

The weightsf!ng are chosen to reduce the amplification of noise
introduced byf��1n g. Since we are dealing with circular convo-
lution, in this case the windowed SVD method is a DFT-domain
(frequency-domain) filter. Many filters of this form have been pro-
posed in photon-limited imaging. In particular, theMetz filter is
commonly used in nuclear medicine imaging [3]. Another com-
mon filter is thetruncated SVDsolution which is obtained by set-
ting weights below a cut-off frequency to1 and above the cut-off
to 0 [6].

1.3. Drawbacks of Frequency-Domain Method

The key limitation of the frequency-domain method is that it matches
the reconstruction basis to the operatorK with no regard for the



underlying signal of interest. The frequency-domain method uses
the DFT vectors which have spatial support over the entire signal.
Hence the frequency-domain method can not adjust to spatial vari-
ations in the behavior of the signal. Recently it has been shown
that much better solutions can be obtained by matching the basis
functions to the signal rather than to the operator [4, 6]. However,
we emphasize that previous work dealt exclusively with Gaussian
noise contamination.

This paper considers a discrete version of Donoho’s wavelet-
vaguelette decomposition (WVD) method for linear inverse prob-
lems [4]. It has been shown that the WVD solution can attain
optimal convergence rates [4]. In Section 2, we review wavelet-
domain filtering for direct photon-limited imaging. In Section 3,
we derive a new WVD algorithm for image restoration problems
involving Poisson noise. In Section 4, we develop an efficient algo-
rithm for computing the WVD restoration. In Section 5, we apply
the algorithm to nuclear medicine imaging, and it is shown that the
WVD method can provide much better solutions than frequency-
domain techniques. In Section 6, we make concluding remarks
and indicate possible directions for future work.

2. WAVELET-DOMAIN FILTERING FOR
PHOTON-LIMITED IMAGING

The discrete wavelet transform (DWT) provides a very concise
representation for wide classes of real-world signals. This property
has been exploited to develop extremely low-bit-rate compression
algorithms [7] and powerful signal denoising and estimation meth-
ods [4]. In this section, we review the DWT and wavelet-domain
filtering for noise removal in direct photon-limited imaging.

2.1. The Discrete Wavelet Transform

The 2-d orthogonal DWT represents a real-valued,2M � 2M im-
age in terms of shifts and dilations of a lowpassscaling function
and bandpasswavelet functions[7]. The scaling and wavelet coef-
ficients can be easily computed using a 2-d filter bank consisting
of lowpass and highpass filters and decimators [7, pp.269-270].
Due to the special filter bank structure, the forward and inverse
DWT can be computed inO(N) operations.Throughout the pa-
per we restrict our attention to the periodic DWT.This means that
all convolutions in the filter bank are circular. The underlying 2-d
wavelet functions at each scale have three distinct orientations —
horizontal, vertical, and diagonal. Together the wavelet and scal-
ing functions provide an orthonormal basis for 2-d images. For
more details on 2-d wavelet transforms see [7].

To simplify notation, we denote the underlying wavelet and
scaling functions collectively by the abstract notationfwngN�1n=0 .
Thus, an image� can be represented in terms of the DWT as

� =

N�1X
n=0

�nwn (5)

where the DWT coefficients�n = hwn;�i, the inner product be-
tween the basis function and the image.

2.2. Wavelet-Domain Filtering for Direct Photon Imaging

Wavelet-domain filtering for direct photon imaging (K = Identity)
is studied extensively in [5, 8]. In this paper, we develop an image
restoration algorithm based on the approach proposed in [5] which

is described as follows. Given direct countsc � Poissonf�g,
compute the DWT ofc and letfb�ng denote the DWT coefficients.
Next, filter the raw DWT coefficientsb�n to obtain new coefficientse�n according to

e�n =

�b�2n � � �2nb�2n
�
+

b�n (6)

where�2n is an unbiased estimator of the noise power inb�n, � � 0
is a gain factor, and(�)+ denotes the positive part of the argument.
The mappingb�n 7! e�n is a nonlinear threshold operation — co-
efficients with low signal-to-noise ratio (SNR) are set to zero, and
those with high SNR are left essentially unaltered. Thus, the filter
removes small wavelet coefficients that contain significantly more
noise than signal. Increasing the gain� increases the threshold.
The filtered image is reconstructed by computing the inverse DWT
of the filtered coefficientsfe�ng. It can be shown that if� = 1, then
this filtering procedure minimizes a predictive sum of squared er-
rors, and is asymptotically optimal in the mean square error sense
[5, 9].

3. WVD METHODS FOR INVERSE PROBLEMS IN
PHOTON-LIMITED IMAGING

The problem we are interested in is recovering an intensity image
� from observed countsc � PoissonfK�g. The idea of the WVD
method is to use the wavelet functions, rather than the eigenfunc-
tions of the operatorK, in the inversion process since the wavelet
transform provides an efficient representation for many signals.
Hence, the WVD method matches the basis functions to the signal
rather than the operator. Furthermore, because the wavelet func-
tions are localized in both space and frequency the WVD enables
a spatially adaptive inversion. In this section, we use the WVD to
extend the wavelet-domain filtering techniques described above to
the inverse problem at hand.

3.1. The Wavelet-Vaguelette Decomposition

The goal of the WVD is to express the solution to the inverse prob-
lem in terms of the wavelet and scaling functions. Equation (5)
shows that all we need to reconstruct the signal are the DWT coef-
ficients of�. The WVD can be used to obtain unbiased estimates
of the DWT coefficients from the indirect datac � PoissonfK�g.
Let K�� denote the adjoint ofK�1, and defineun = K

��

wn.
Similar to the terminology in [4],un is called avaguelette. Con-
sider the inner product between the data and the vaguelette

b�n = hun; ci =


K
��

wn; c
�

(7)

The expected value ofb�n is

E
hb�ni = 


K
��

wn;K �
�
= hwn;�i (8)

where we exploit the linearity of the inner product and definition of
K
��.1 Hence, the vaguelette coefficients are unbiased estimators

of the DWT coefficients of�.
The vaguelette coefficients of the data are noisy versions of

the DWT coefficients of the signal we are trying to recover. Plug-
ging the vaguelette coefficients directly into (5) in place of the true

1


K
��
wn;K �

�
=


wn;K

�1
K �

�
= hwn;�i.



DWT coefficients will only reproduce (2). To improve the solution
we must modify the vaguelette coefficients prior to reconstruction.

3.2. WVD Methods for Photon-Limited Imaging

In the spirit of the wavelet-domain filtering method for photon
imaging outlined in Section 2, we can improve the estimatesfb�ng
of �’s DWT coefficients by applying the threshold nonlinearity
(6) to the vaguelette coefficients. To construct the threshold oper-
ation, we require estimators of the noise power in each vaguelette
coefficient. Each vaguelette coefficient is a linear combination of
Poisson variates. Let us denote this by

b�n = hun; ci =
X
i

ui;nci (9)

whereci � Poisson(�i). Then the variance of the vaguelette co-
efficient is

�2n = Var
�b�n� =

X
i

u2i;n�i (10)

Therefore an unbiased estimator of the variance is

c�2n =
X
i

u2i;nci (11)

In other words, the inner product between the data and the point-
wise square of the vaguelette provides an unbiased estimator of the
noise power in the corresponding vaguelette coefficient.

With this estimator for the noise power, we can apply the
threshold to the vaguelette coefficients:

e�n =

�b�2n � � �2nb�2n
�
+

b�n (12)

In effect, the threshold discards all vaguelette coefficients except
those that contain significant signal energy. Again, the gain� is
chosen by the user. If� = 1, then following the analysis in [9] it
is easy to show that this threshold minimizes a predictive sum of
squared error criterion for the inverse problem. Also, in this case
the threshold above is asymptotically optimal in the mean-square-
error sense. Larger values of� correspond to more aggressive
thresholding and thus more regularization.

The WVD solution to the LSI inverse problem is

e� =

N�1X
n=0

e�nwn (13)

e� can be computed by taking the inverse DWT (IDWT) of the
thresholded vaguelette coefficients. In this process, it is possible
that a pixel intensity estimate is negative. However, in our experi-
ence this is not a significant problem — only a few low-intensity
pixels may have negative estimates. A simple remedy is to set neg-
ative pixel estimates to zero. The next section shows that the WVD
solution can be computed very efficiently.

4. COMPUTING THE WVD

The vaguelette coefficients can be obtained directly by forming
K
��, generatingun = K

��

wn, and computing the inner prod-
ucts in (7), requiringO(N3) operations, whereN is the number of
pixels in the image. The squared vaguelette that is required for the

noise power estimator is easily obtained by squaring each element
of un and computing its inner product withc. However, these cal-
culations can be computed much more efficiently by exploiting the
shift-invariance of the operatorK and the fact that we are working
with the periodic DWT.

The vaguelette coefficients at thej-th scale in one of the three
orientations (horizontal, vertical, and diagonal) can be computed
by circularly convolvingc with K��

w, wherew is a represen-
tative wavelet function at thej-th scale in the proper orientation,
and then downsampling by2j in both vertical and horizontal di-
rections. Note that sinceK is a circular convolution operator
so isK��. ThereforeK��

w can be computed inO(NlogN)
operations.2 The noise power estimates are computed by convolv-
ing c with the point-wise square ofK��

w and downsampling.
The overall complexity of computing the vaguelette coefficients
and noise estimates at thej-th scale isO(NlogN) and we have at
mostO(logN) scales. Hence, the overall cost of computing the
WVD inverse (13) isO(Nlog2N).

Note that the vaguelette coefficients can be even more effi-
ciently computed. SinceK and the highpass and lowpass filters
in the DWT filter bank are all circular convolutions, it is easy to
show that the vaguelette coefficients ofc are equal to the DWT
coefficients ofK��

c [6]. Hence, the vaguelette coefficients are
simply the coefficients of a prefiltered DWT and therefore can be
computed inO(NlogN) operations. Note, however, that the same
“trick” can not be used to compute the noise power estimates due
to the squaring of the vaguelette functions. Therefore, the overall
complexity of the WVD inverse is stillO(Nlog2N).

The fast WVD algorithm is summarized below.

Fast WVD for LSI Inverse Problems
in Photon-Limited Imaging

1. Use FFT to compute circular convolutionK��

c

O(N logN) operations

2. Compute DWT ofK��

c to obtain vaguelette coefficients

O(N) operations

3. Compute vaguelette noise power estimates

O(N log2N) operations

4. Compute solution by taking IDWT of thresholded
vaguelette coefficients

O(N) operations

5. APPLICATION TO NUCLEAR MEDICINE IMAGING

Nuclear medicine images are formed by detecting gamma-ray pho-
tons emmitted as a radioactive pharmaceutical decays inside a hu-
man patient [1, pp. 157-162]. A nuclear medicine spine image,
acquired with a General Electric Starcam System, is shown Fig-
ure 1 (a). The gamma-ray emission process is well-modeled by
the Poisson distribution. A lead collimator, placed in front of the
detectors, produces a significant distortion in the data that is well-
modeled as a lowpass LSI filterK that is radially symmetric in
the frequency-domain as depicted in Figure 2. Hence, the counts

2The inverse DWT used to computew requiresO(N) operations and
the circular convolutionK��w requiresO(NlogN) operations.



that are detected can be modeled by (1). The frequency response
is severely lowpass, and drastically reduces spatial resolution.

In this application the distortion is real and symmetric, and
thereforeK�� = K

�1. The inversion process (resolution recov-
ery) is extremely ill-posed, and in practice an approximation to the
inverse ofK is used instead ofK�1. The classical approach to
resolution recovery in nuclear medicine is the Metz filter [3]. Two
Metz filters are depicted in Figure 2. The Metz filter attempts to
strike a balance between inverse filtering and noise amplification.
The Metz filter I restoration of the spine image is shown in Fig-
ure 1 (b). More aggressive filtering is possible using Metz filter
II, but this can lead to excessive noise amplification (see Figure 1
(c)). However, using the WVD method with Metz filter II to ap-
proximateK�1 (see Figure 1 (d)) provides much better resolution
recovery than Metz filter I, and eliminates the excessive noise am-
plification that is incurred in the direct application of Metz filter
II. In this example, we used the Daubechies-8 wavelet since, due
to its good regularity and localization properties, it should provide
an excellent match to the intensity of interest. Also, the gain factor
� = 2 in (12).

(a) (b)

(c) (d)

Figure 1: Restoration of nuclear medicine image. (a) Original
noisy and blurred spine image, (b) image restoration using Metz
filter I, (c) image restoration using Metz filter II alone, (d) restora-
tion using WVD method with Metz filter II. Metz filter II recovers
more resolution than the Metz filter I, but at a cost of greater noise
amplification. Using Metz filter II in the WVD algorithm produces
a very nice, high resolution image without noise amplification.

6. CONCLUSIONS

This paper described a novel WVD method for inverse problems
in photon-limited imaging. We have applied the new algorithm to
nuclear medicine imaging, and we have demonstrated that it offers
advantages over classical frequency-domain filtering approaches.
In particular, the WVD method enables resolution recovery with-
out degrading noise artifacts such as those generated by the Metz
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Figure 2: Inverse filters for nuclear medicine imaging. The fre-
quency responseK of the imaging system, Metz filter I, and Metz
filter II are pictured above. For comparison the true inverseK

�1

is also shown.

filter. Furthermore, simulated data studies with Gaussian noise [6]
and Poisson noise [10] have shown that the WVD method signifi-
cantly outperforms frequency-domain filtering techniques like the
Metz filter. In future work, we plan to compare the WVD method
to Maximum Likelihood-based approaches [2].
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