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ABSTRACT

Conventional —metrics used to quantify signals in
noise/hearing research rely primarily on time-averaged energy
and spectral analyses. Such metrics, while appropriate for
Gaussian-distributed waveforms, are of limited value in the
more complex sound environments encountered in
industrial/military settings that have nonGaussian and
nonstationary-distributed waveforms. Recent research has
shown that metrics incorporating the temporal characteristics
of a waveform are needed to evaluate hazardous acoustic
environments for purposes of hearing conservation. The joint
peak-interval histogram is a prospective candidate for use in
such an application. This paper shows that the joint peak-
interval histogram can be obtained from an estimation of the
temporal pattern of a complex noise waveform by using higher-
order cumulant-based inverse filtering.

1. INTRODUCTION

Conventional metrics, such as the sound pressure level (SPL),
and narrow or broadband (weighted) spectral energies, are
used to evaluate the potential of an acoustic noise
environment to produce a noise-induced hearing loss (NIHL).
Such metrics can adequately quantify a noise having a steady-
state waveform such as a continuous Gaussian noise and can
be used to estimate the hazard to hearing from prolonged
exposure to such noise. However, there is abundant evidence
in the literature [3][4][8] showing that nonGaussian,
nonstationary types of noises having the same energy and
spectra as a Gaussian noise but different temporal structures,
produce different audiometric and histological effects on the
auditory system. Thus, conventional metrics are not adequate
for the assessment of hearing hazards from noise exposures
whose waveforms have nonGaussian and nonstationary
characteristics. Such noises occur in many industrial
environments.

Experiments using animal models [4][11] have demonstrated
quite clearly that a simple A-weighted equivalent energy [9]
is not a sufficient measure of hazard associated with
nonGaussian noise environments. A report by Patterson et al.
[10] concludes that both the energy and the peak SPL of an
impact exposure are important variables in determining trauma.
Demographic data [15][16] show that nonGaussian noise
exposures are more hazardous to hearing than are Gaussian
noises of similar equivalent energy (Leq). Our own recent
animal studies [4] have shown that noises that have the same
Leq and the same spectra but that differ considerably in their

temporal structure produce very different hearing losses,
which are distributed very differently across audiometric test
frequencies. Histological data confirm this result. A similar
result involving up to 30 dB differences was found by Dunn
et al. [3] using a much different experimental paradigm. The
role of temporal variables is further emphasized in recent
studies using interrupted noise exposure paradigms [6].

Based upon some of these early data we formulated the
working hypothesis that, for the same total energy and
spectrum, a high kurtosis noise exposure is more hazardous to
hearing than a Gaussian noise exposure, and that this effect is
frequency dependent. The truth of this statement is
demonstrated in the Lei et al. [8] paper in which kurtosis
(statistic) metrics in both the time and frequency domains were
shown both to rank order the level of hearing trauma and to
reflect the frequency specificity of trauma. These results are a
clear indication that, in addition to energy, temporal and peak
variables are important determinants of hearing loss. Since the
kurtosis statistics reflects the peak and temporal structure of a
nonGaussian noise, an algorithm that would yield these
metrics along with peak and interval histograms would be
highly desirable elements of a hearing conservation noise
measurement system.

The fact that both temporal and spectral variables are
important is not surprising since the cochlea has evolved into
an exquisitely sensitive transducer of nonstationary
stochastic signals typified by speech and music. Results such
as outlined above have led to efforts to develop additional
metrics which incorporate the temporal information inherent
in the waveform of a noise. The joint peak-interval histogram,
which shows the cumulative distribution of the peak
amplitude reflections and timing intervals of the nonGaussian
fluctuations in a noise waveform, is a candidate metric for
quantifying noise exposures. This metric, in conjunction with
conventional energy-based metrics, may prove to be useful in
the evaluation of a noise environment for the protection of
hearing. Higher-order cumulant-based filtering can be used to
deconvolve noise waveforms to obtain the requisite amplitude
and timing information for the construction of this proposed
metric.

Complex noises [7], which simulate the nonstationary and
nonGaussian characteristics of realistic industrial/military
noise environments, have been used as experimental stimuli in
animal studies of NIHL. These stimuli were shown to
exacerbate hearing loss when compared to spectrally-
equivalent Gaussian noises of the same energy [8]. The
complex noise consisted of a high-level primary impulsive
sequence and multiple reflected components superimposed on



a continuous Gaussian background noise. Such a stimulus,
x(k), can be expressed as:

x(k) = s(k-ko) + a1 s(k-ki) + o s(k-kz) + ... + n(k)
=u(k) ® s(k) + n(k)
u(k) = d(k-ko) + cud(k-ki) + azd(k-ko) + ... (1)

where ® represents the convolution operator; 8(k) is the unit
kronecker delta sequence; s(k) is a primary impulsive
sequence; n(k) is the additive Gaussian distributed noise, and
u(k) is a reflectivity sequence containing information on the
amplitude reflections and time delays (i are the reflected
amplitude factors, and k; are time delays). These factors and
delays are independent random variables which control the
amplitude fluctuations resulting from multipath interference,
nonstationary sources, or characteristics of the propagating
medium. If o; and ki can simultaneously be estimated from the
complex noise samples alone, then «; and k; can be used to
construct the joint  peak-interval  histogram.  The
deconvolution operation then can be applied to extract the
reflectivity sequence of the complex noise waveforms.

2. DECONVOLUTION USING
HIGHER-ORDER CUMULANT-BASED
INVERSE FILTERING

The deconvolution operation is shown in the block diagram
of Figure 1. The input excitation, w(k), is desired and can be

w(k) . x(K) ] y(k)
convolution deconvolution

N f(k) > g(k)

Figure 1. Block diagram of deconvolution operator to
recover the input w(k) from observed sequence x(k)
alone.

suitably estimated by measuring the response time series, x(k),
alone. A higher-order cumulant-based inverse filtering method
[17] can be used to recover w(k) when the information in the
input excitation and convolution operation is unknown (i.e.,
“blind” deconvolution [2][5]]). It has been shown that the
output of any time-invariant linear operator with a white
noise input results in a stationary random time series and that
the magnitudes of the normalized cumulants of the output are
less than or equal to the magnitude of the input excitation's
normalized cumulant as shown in Equation (2) [1][2][12].

IKy(p,)| =IKu(p: @), Ky(p.q)=Cy(p)/|Cy()"%; for p>q  (2)

where Ky(p,q) is the normalized cumulant of order (p,q)
associated with output y(k), and Cy(q) is the q-order cumulant
of y [14]. Based on this theorem, the algorithm for finding the
inverse filter for the deconvolution can be initiated by
selecting any integer values for p and q; usually p is an even
number and q is set equal to 2. The magnitude of the
normalized cumulant, Ky, with respect to the linear operation
between the input and output is then maximized. Since f(k) is
implicitly contained within the measured data, x(k), the
maximization must be made with respect to the deconvolution
operator’s impulse response, g(k). If a higher-order cumulant-

—

based inverse filter is used to implement the deconvolution
operator, the response normalized cumulant is dependent on
the coefficients of this inverse filter, g(k). This dependency
will be highly nonlinear. A quasi-Newton method [13], used
in nonlinear programming algorithms, can be used to find a
functional relative maximum value of the function Ky. This
method is similar to the steepest ascent algorithm but with a
faster convergence to the maximum value of the objective
function. A higher-order cumulant-based inverse filter is used
in this paper because the implicit convolution operator is not
necessarily of minimum phase. Also, higher-order cumulants
are inherently immune to additive Gaussian noise.

The deconvolution model outlined above can be used to
remove the effects of the primary impulsive sequence and to
estimate the reflectivity sequence in a complex noise. An
estimation of the reflectivity sequence, u(k), extracted from
samples, x(k), of the waveform can provide temporal variation
information on the nonGaussian component of a complex
noise since the timing and the strength of the impulsive
reflections can be obtained from u(k). A higher-order
cumulant-based inverse filtering is proposed for estimating
the reflectivity sequence as shown in Figure 2. An inverse
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Figure 2. A higher-order cumulant-based inverse filter
used to estimate the reflectivity sequence in a complex
noise. The information of u(k), s(k), and n(k) (shown
on the left of the vertical dashed line) is implicitly
contained in x(k) and unknown to the deconvolution
operator implemented by inverse filter b(k).

filter, b(k), acts as a deconvolution filter having as an input
only the measured samples of x(k). The fourth-order normalized
cumulant, that is the kurtosis, shown in equation (3), is
computed on the output sequence y(k) of the inverse filter.

E{(y(k)— E{y(k)})“}

K ,(42) = -3 (3)

2 2
(E{(y(k)—E{y(k)}) })

where E{ . } is the mean operator. The coefficients of b(k) were
obtained by maximizing the magnitude of the kurtosis values
of the output sequence of this inverse filter. While we have
used the fourth-order cumulant as a example to illustrate this
estimate, the result can also be obtained by using other
higher-order cumulant computations with the same



procedures. Since the higher-order cumulant values are highly
nonlinear functions of the coefficients of b(k), the coefficients
of the inverse filter can be obtained by an iterative numerical
optimization technique using a quasi-Newton method. The
converged output sequence of the deconvolution will then be
an optimum estimate of u(k). The joint peak-interval histogram
of the complex noise can then be constructed from the
recovered temporal information that was hidden in u(k).

3. SIMULATION RESULTS

Two complex noise waveforms having the same primary
impulsive sequence were generated by computer simulation as
shown in Figure 3(a). These two waveforms which have
identical energy levels and spectra which is shown in Figure
3(b). Their temporal patterns, as seen in Figure 3(a), are
different. Waveform I was generated by a reflectivity sequence
whose amplitude reflections and timing delays were randomly
distributed. In Waveform II the timing delays of the
reflectivity sequence are periodic and the amplitude
reflections have a random binary distribution. The reflectivity
sequences of these two waveforms are shown in Figure 3(c).
These two waveforms were processed by a fourth-order
cumulant-based inverse filter to estimate their reflectivity
sequence u(k). This inverse filter was implemented by an FIR
filter of order 14. The inverse filter coefficients were
determined by maximizing the magnitude of the fourth-order
cumulant of the output sequence, y(k), as shown in Figure 2.
The output sequences of these two waveforms are shown in

Figure 3(d). These two sequences, resulting from
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Figure 3. (a) Examples of two complex noise waveforms
having different temporal structures. (b) Spectra of each
of the temporal waveforms. (c) The reflectivity
seequences of each of the temporal waveforms. (d) The
reflectivitiy for each of the waveforms estimated from a
fourth-order cumulant-based inverse filter analysis.

deconvolution by the inverse filter, are the optimum estimates
of the reflectivity sequences. Comparison of Figures 3(c) and
3(d) indicate that the estimates provided by the inverse
filtering are good estimates of the temporal patterns inherent
in the original signals. The joint peak-interval histograms for
the two waveforms shown in Figure 3(a) are presented in
Figure 4. The amplitude and timing of each spike in the spike
train sequences were recorded. The amplitude and temporal
variable range was divided into 20 and 16 bins, respectively.
The histograms were obtained from a cumulant-based inverse
filtering analyses of 1,000 windows of the complex noise
waveforms. The histograms show different contour shapes for
each of the two waveforms. The shape of the histogram for
Waveform I, shown in Figure 4(a), is relatively flat and
uniform since the amplitude reflections and timing delays are
uniformly and normally distributed. The shape of the
histogram for Waveform II, shown in Figure 4(b), is
periodically spiky and concentrated in the two binary value
bins since the timing delays are periodic and the amplitude
reflections are randomly binary distributed.

Distribution #
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Figure 4. Joint peak-interval histograms of Waveforms
I (a) and II (b). Amplitude range is from -1 to +1.

4. SUMMARY

This paper shows that a higher-order cumulant-based inverse
filter can be used to estimate the reflectivity sequence within a
complex noise waveform. The estimated reflective sequence can
be used to differentiate between different temporal patterns
which can then be quantified by the joint peak-interval
histogram. All information on the temporal structure of a
signal is lost in the conventional metrics that are based on
energy and spectral computations. The joint peak-interval
histogram along with kurtosis and energy-based metrics will
contribute to the development of a measurement strategy that
will allow us to order noise stimuli, having similar energy
spectra, in terms of their potential for causing permanent
changes to the auditory system. The primary focus of this
paper was to present a method of obtaining the joint peak-
interval histogram that could be incorporated into a noise
analysis system. The utility of this histogram metric for
assessing hearing hazards can ultimately only be determined
from animal model experiments of the type described in Lei et
al. [8].
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