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ABSTRACT

A hybrid mixture is a mixture of supergaussian, gaussian,
and subgaussian independent components(ICs). This pa-
per addresses extraction of ICs from a hybrid mixture.
There are two kinds of (single-output vs. all-outputs)
kurtosis function to be considered as a contrast func-
tion. We advocate the former approach due to its (1)
simple and closed-form analysis, and (2) numerical con-
vergence and computational saving. Via this approach,
all (and only) the positive local maxima (resp. negative
local minima) can yield supergaussian (resp. subgaus-
sian) ICs from any mixture[5]. We also propose a net-
work algorithm, Kurtosis-based Independent Component
Network(KuicNet), for recursively extracting ICs. Numer-
ical and convergence properties are analyzed and several
application examples demonstrated.

1. INTRODUCTION

Independent component analysis(ICA) extracts compo-
nents with higher-order statistical independence. It is to
�nd linear feature extraction such that the extracted com-
ponents are as independent as possible. It has found po-
tential applications in blind source separation e.g. "cock-
tail party" problem, sensor array processing, interference
or noise reduction/removal, and �nding minimum entropy
code, etc. The work has prompted a lot of interests
in neural network community thanks to notion of an
information-maximization approach to blind separation and
blind convolution[1, 2, 3].
A nontrivial hybrid mixture is one containing super-

gaussian as well as subgaussian components. The paper
aims at addressing the extrema property of kurtosis, thus
establishing an e�ective contrast function and a KuicNet
learning rule for IC extraction from such hybrid mixtures.

1.1. Single-Output Kurtosis Contrast Function
Throughout the paper, all the source signals fsig are as-
sumed to be mutually independent (up to the 4-th order):

E[si] = 0; E[s2i ] = 1; and
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Given a vector x consists of N observation processes each
being a linear combination of the source signals: x = As,
where A is an unknown N �N (mixer) matrix. The main
problem for single-output ICA is to design a contrast func-
tion whose maximization would yield a scalar process y(t),
y = mTx(t), so that y(t) extracts one of the N indepen-
dent components. (We also denote y(t) = bT s(t), where
bT =mTA.)
Figure 1.1. depicts a network con�guration (with one out-

put y). for the extraction of the primary component under
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Figure 1. (a) The mixing process is represented
by an unknown matrix A. (b) Prewhitening pro-
cedure. (c) Ignoring x and operating on the repro-
duced space v proves to be numerical advantageous.

a given criterion. y =mTx where x(t) is zero-mean vector
process, i.e. x(t) 2 RN , an N-dimensional vector space.

Kurtosis: The kurtosis of a process y is de�ned as

k(y) = f(y)� 3; where f(y) =
E[y4]

E[y2]2

Note k(y) and f(y) are scale-invariant, i.e. f(�y) = f(y).
A scale-invariant functional �(y) is a valid contrast func-

tion for separating the sources fsi; i = 1; � � � ; Ng if

minif�(si)g < �(
X
i

�isi) < maxif�(si)g (1)

for at least two nonzero coe�cients f�ig[5].

1.2. Numerical Advantages
� Just like PCA extraction, it was proposed to extract
one IC at one time[4]. It is especially advantageous for
the hybrid mixture, because the single-component ex-
traction e�ectively circumvents the e�ect of the mixed
positive and negative kurtosis - which has plagued the
\all-outputs" contrast functions.

� In [4], a squared-kurtosis function was adopted as the
contrast function. From the numerical perspective, it
is not advisable to use the squared-kurtosis as con-
trast function as its corresponding adaptive algorithm
necessitates the di�cult task of estimating k(y). It is
numerically superior to work with kurtosis, instead of



Cases Extrema for IC Non-IC Extrema

super+sub N extrema None
super+G & sub+G N extrema None

super+sub+G N � 1 extrema None
all-super N maxima(+) 2N�1 minima(+)
all-sub N minima(-) 2N�1 maxima(-)

Table 1. The extrema of the kurtosis function.
squared-kurtosis, since it allows us to circumvent the
need of estimating k(y) - and the associated numerical
hazard.

� During maximizing Eq. 5 via computing gradient w.r.t.
m, the division (due to the denominator in Eq. 5) in-
curs severe numerical di�culty. This can be circum-
vented altogether by working on a reproduced space v
derived by pre-whitening(Section 3.), which has been a
popular technique in the ICA literatures. Thereafter,
a gradient method leads to our KuicNet learning rule,
cf. Section 4.

� Once one IC is extracted, a de
ation algorithm (which
is well-established in numerical analysis literature) may
be applied to remove that IC from the mixture signals.
Thereafter, the other components may be extracted by
a recursive procedure, cf. Section 4.

2. EXTREMA OF KURTOSIS FUNCTION

We shall from now on - without loss of generality - reorder
the source signals according to the values of the kurtosis:

k(s1) � k(s2) � :::::k(sN ) (2)

Let p denote the number of the supergaussian and m that
of the subgaussian components. In general, p+m � N . In
the absence of zero-kurtosis processes1 then N = p+m.

Theorem 2..1 The kurtosis function as a function of
m, k(y) = k(y(m)), has the following extrema:

�� If k1 � 0 and kN � 0, i.e. assuming a (nontrivial)
hybrid mixture, then the kurtosis function k(y) (and
f(y)) meets the condition Eq. 1 on contrast function.

For this case, there are p maxima and m minima.
The output y extracts a supergaussian IC (resp. a sub-
gaussian IC) if and only if a local maximum (resp.
minimum) is reached. The extreme value equals the
kurtosis of the extracted independent component. (See
Figures 2(a)(b)(c).)

� For the homogeneous mixture cases, assuming kN > 0
i.e. all-supergaussian, then the maxima of k(y) yield
ICs, but not the minima. (See Figure 2(d).) Similar
arguments hold for teh case k1 < 0.

� For all the cases, all the non-negative maxima and non-
positive minima extract ICs and only these extrema
(i.e. neither negative maxima nor positive minima)
yield any pure ICs. (See Figure 2 and Table 1.)

The theorem follows directly the extrema property of kurto-
sis function as established in [5], illustrating (1) the number
of extrema (modulo a scaling factor), (2) the locations of
the extrema, and (3) the corresponding extreme values.
As exempli�ed in Figure 2, there are 3 ICs. If s1 and

s2 are supergaussian while s3 either subgaussian (i.e. case
\super+sub") or gaussian (i.e. case \super+G"), then ac-
cording to Table 1 there are N = 3 extrema. The two max-
ima of k(y) yield s1 or s2, while the only minimum yields
s3, cf. Figures 2 (a) and (c).

1A gaussian component must have zero kurtosis, but a zero-
kurtosis process needs not to be gaussian.
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Figure 2. The extrema w.r.t. the 2 free variables in
the normalized m space for 3 independent sources
(here 2 = 3-1). Cases: (a) super+sub, (b) su-
per+sub+G, (c) super+G, and (d) all-super.

Figures 2(d) shows a total of N + 2N�1 = 7 extrema for
the case of 3 \all-supergaussian" ICs. The 3 positive-valued
maxima yield 3 ICs, while the 4 (positive-valued) minima
yield mixed signals. (Note only 3 of the 4 minima are visible
in the �gure.)
For the all-supergaussian case (kN > 0), there are p = N

local maxima (with the extreme values being kl; 8l � p)
and 2N�1 (positive equal-valued) minima. See Figure 2
(d). The output y extracts one of the p supergaussian ICs
if and only if a local maximum of k(y(m)) is reached.
The local minima, on the other hand yield mixed outputs:

y =

NX
j

bjsj ; where bj = �

s
k�1
jPN

l=1
k�1
l

(3)

There are only 2N�1 local maxima, modulo the scale in-
variance (i.e. with scale factor = -1), although 2N possible
combinations of di�erent signs exist. The extreme values
are all equal to the homogeneous mean: (Fig. 2(d)).

k(y) = [

NX
l=1

k
�1
l ]�1

> 0 (4)

3. REPRODUCED SPACE VIA
PRE-WHITENING PROCESS

To �nd a solution y =mTx to (locally) maximize

MAXm �(y) =MAXm
E[(mTx)4]

E[(mTx)2]2
; (5)

then the division by E[y2] = E[(mTx)2] is vulnerable to
numerical mishap and thus must be avoided if possible. A
simple way out is by creating a reproduced space v. See
Figure 1.1.(c).
The reproduced space is generated by the following steps:

� First, we generate a normalized and pre-whitened pro-
cess v = P x. Each element of v corresponds to one of
the (conventional) principal components with variance
= 1.



� Note that y = wTv = wTPx;
So m = PTw. From now on, we work with the new
representation of y, cf. Figure 1.1.(c):

y = wTv

The key advantage of operating in the space v, is that

E[y2] = E[(wTv)2] = kwk2 ( = kbk2 ) (6)

has the appearance of a function of only w - instead of v
andw. (This attribute is also enjoyed by the source space s,
i.e. E[y2] = kbk2.) In this sense, v space exhibits a similar
property to the source space s. This is why v is called a
reproduced space of s.

Numerical Procedure for Reproducing v-space As-
suming that a total of M observation samples are available,
here we describe a numerically e�cient procedure for deriv-
ing v(t) and V, from x(t) and X, where

X = [x(1)jx(2)j � � � jx(M)]

V = [v(1)jv(2)j � � � jv(M)]

1. Compute a covariance matrix of x

Rx = XXT

2. Apply SVD to

XXT = U�2UT

3. Compute V as

v(t) = ��1UTx(t);

Thus
V = ��1UTX

So the covariance matrix of v

Rv = VVT = I

To verify the condition stated in Eq. 6, we note

E[y2] = wTVVTw = kwk2

Note also that

v(t) = Px(t) = PAs(t) = �s(t)

and
w = �b; b = �Tw

where � = PA is a unitary matrix. (Proof: I = VVT =
�SST�T = ��T .)
The ultimate goal is to �nd an inverse (i.e. de-mixing)

matrix W = ��1 = �T , (here we ignore permutation and
sign). So W has to be unitary too.

4. KUICNET LEARNING ALGORITHMS

It is numerically advantageous in working on the reproduced
space v instead of x, we have:

�(y(t)) = E[
(wTv(t))4

kwk4
] = E[g(t)]

where g(t) � (wT v(t))4

kwk4
. To derive a data adaptive learn-

ing scheme, we apply the gradient:

rwg(t) = 4(v
y3

kwk4
�w

y(t)4

kwk6
)

Since the kurtosis is scale-invariant (and so is g(t) ), without
loss of generality, we impose kwk = 1 to obtain:

rwg(t) = 4(vy(t)3 �wy(t)4) (7)

This leads to the following:

Algorithm 4..1 (KuicNet Learning Rule)
The KuicNet learning rule to extract a supergaussian com-
ponent is

�w(t) = +�[v(t)y3(t)�w(t)y(t)4] (8)

where � is a small positive learning rate.
Assuming that s1 > 0, then when the above learning rule
converges (to a local maximum), the extracted output is a
supergaussian source component.
Note: To extract a subgaussian component (assuming sN <
0), (1) +� is replaced by ��, and (2) w(t) should be con-
stantly re-normalized during the iterations[5].

Proof: The convergence occurs when and only when (1)

E[rwg(t)] = 4E[(vy(t)3 �wy(t)4)] = 0 (9)

and (2) the Hessian matrix Hw) is semi-negative-de�nite.
Pre-multiply Eq. 9 by �T ,

0 = �TE[(vy(t)3 �wy(t)4)] = E[(sy(t)3 � by(t)4)]

Examining its j-th element,

0 = bj(b
2
jkj �

NX
l=1

b
4
l kl) (10)

This leads to the following solution

b = [0; � � � 0;�1; 0 � � � 0]T (11)

which has all zeros except its j-th element, j � p, and is a
local maximum of

f(y) =
E[y4]

E[y2]2
=

NX
j=1

b4j

kbk4
kj + 3 =

NX
j=1

b
4
jkj + 3

under the constraint jjbjj2 = jjwjj2 = 1.
By the well-known transformation:

rwf(y) = �rbf(y) and Hw = �Hb�
T

since Hb is semi-negative-de�nite, then so is Hw (cf. [5]).
So we conclude that the solution(s) for Eq. 8 is w = �b;
is indeed a local stable maximum. It follows that the ex-
tracted output

y = wTv = bT�T�s = bT s = �sj

yields a supergaussian component.

Algorithm 4..2 (KuicNet for Extracting All ICs)
Three key steps are in the KuicNet Procedure:

1. Extraction of a supergaussian component:
The following learning rule may be adopted for extract-
ing a supergaussian IC (use \+" rule) or, respectively,
a subgaussian IC (use \�" rule). The initial weight
w(0) can be any normalized random vector.

�w(t) = ��[v(t)y3(t)�w(t)y(t)4] (12)

Numerically, it helps to apply re-normalization, cf.
Section 4., The trained vector w will converge to ex-
tract y = wTv as one of the supergaussian (resp. sub-
gaussian) ICs. For completeness, the �rst column of
the de-mixing matrix M is m1 = PTw:



2. De
ation Procedure
The de
ation involves the removal of the extracted IC
from the reproduced space v(t), resulting in a newer
reproduced space V', formed by a set of N � 1 new
signals: v0(t). Assuming (WLOG) that s1 = �wTv is
the IC just extracted which is to be removed.
To �nd the subspace Worth orthogonal to w, we apply
SVD to I �wwT =

[ Worth w ]

2
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where Worth is an N � (N � 1) matrix, correspond-
ing to the (N-1) singular vectors. By the SVD de�-
nition, [wjWorth] forms a unitary matrix. Obviously,
V0 = WorthV has N � 1 rows, each row is a linear
combination of fs2, s3, ...., sN g. (Thus, the extracted
output y(t) should be independent of v0(t) - a fact may
be adopted for our on-line veri�cation.)
Now the recursion is basically all set. For example, if
w0 yields a second IC, then the second column of M
can be back-tracked as

m2 = PTWorthw
0

So can other components fmj ; j > 2g be derived.

3. Termination Rule: (Mode-Switching Rule)
The procedure terminates, when the output y consis-
tently yields a negative (resp. positive) kurtosis.

5. SIMULATION RESULTS

We have performed two experiments each with three
sources, with the de
ation procedure implemented, and the
KuicNet successfully recovered the source signals.
Experiment 1: Mixtures of speech signal and noise
Two speech signals are corrupted by a subgaussian interfer-
ence noise, with very high noise-signal-ratio. By listening
to the actual sounds, as well as inspecting the waveforms
depicted in Figure 3, we conclude that KuicNet can recover
(two) very clear speech signals from (three) almost non-
intelligible sounds.
Experiment 2: Mixture of image/speech signals
As shown in Figure 4, the KuicNet successfully recover one
(supergaussian) speech signal and two (subgaussian ) im-
ages from three multi-media mixtures.
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Figure 3. (a) (b) Original speech signals (c) one of
the three hybrid mixtures - corrupted by uniform
random noise; (d) recovered noise; (e) and (f) re-
covered and (well) separated speech signals
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(c) (d)

Figure 4. (a) One of the three hybrid mixtures.
(b) recovered speech signal (c) and (d) recovered
images


