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ABSTRACT

A hybrid mixture is a mixture of supergaussian, gaussian,
and subgaussian independent components(ICs). This pa-
per addresses extraction of ICs from a hybrid mixture.
There are two kinds of (single-output vs. all-outputs)
kurtosis function to be considered as a contrast func-
tion. We advocate the former approach due to its (1)
simple and closed-form analysis, and (2) numerical con-
vergence and computational saving. Via this approach,
all (and only) the positive local maxima (resp. negative
local minima) can yield supergaussian (resp. subgaus-
sian) ICs from any mixture[5]. We also propose a net-
work algorithm, Kurtosis-based Independent Component
Network(KuicNet), for recursively extracting ICs. Numer-
ical and convergence properties are analyzed and several
application examples demonstrated.

1. INTRODUCTION

Independent component analysis(ICA) extracts compo-
nents with higher-order statistical independence. It is to
�nd linear feature extraction such that the extracted com-
ponents are as independent as possible. It has found po-
tential applications in blind source separation e.g. "cock-
tail party" problem, sensor array processing, interference
or noise reduction/removal, and �nding minimum entropy
code, etc. The work has prompted a lot of interests
in neural network community thanks to notion of an
information-maximization approach to blind separation and
blind convolution[1, 2, 3].
A nontrivial hybrid mixture is one containing super-

gaussian as well as subgaussian components. The paper
aims at addressing the extrema property of kurtosis, thus
establishing an e�ective contrast function and a KuicNet
learning rule for IC extraction from such hybrid mixtures.

1.1. Single-Output Kurtosis Contrast Function
Throughout the paper, all the source signals fsig are as-
sumed to be mutually independent (up to the 4-th order):

E[si] = 0; E[s2i ] = 1; and
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Given a vector x consists of N observation processes each
being a linear combination of the source signals: x = As,
where A is an unknown N �N (mixer) matrix. The main
problem for single-output ICA is to design a contrast func-
tion whose maximization would yield a scalar process y(t),
y = mTx(t), so that y(t) extracts one of the N indepen-
dent components. (We also denote y(t) = bT s(t), where
bT =mTA.)
Figure 1.1. depicts a network con�guration (with one out-

put y). for the extraction of the primary component under
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Figure 1. (a) The mixing process is represented
by an unknown matrix A. (b) Prewhitening pro-
cedure. (c) Ignoring x and operating on the repro-
duced space v proves to be numerical advantageous.

a given criterion. y =mTx where x(t) is zero-mean vector
process, i.e. x(t) 2 RN , an N-dimensional vector space.

Kurtosis: The kurtosis of a process y is de�ned as

k(y) = f(y)� 3; where f(y) =
E[y4]

E[y2]2

Note k(y) and f(y) are scale-invariant, i.e. f(�y) = f(y).
A scale-invariant functional �(y) is a valid contrast func-

tion for separating the sources fsi; i = 1; � � � ; Ng if

minif�(si)g < �(
X
i

�isi) < maxif�(si)g (1)

for at least two nonzero coe�cients f�ig[5].

1.2. Numerical Advantages
� Just like PCA extraction, it was proposed to extract
one IC at one time[4]. It is especially advantageous for
the hybrid mixture, because the single-component ex-
traction e�ectively circumvents the e�ect of the mixed
positive and negative kurtosis - which has plagued the
\all-outputs" contrast functions.

� In [4], a squared-kurtosis function was adopted as the
contrast function. From the numerical perspective, it
is not advisable to use the squared-kurtosis as con-
trast function as its corresponding adaptive algorithm
necessitates the di�cult task of estimating k(y). It is
numerically superior to work with kurtosis, instead of



Cases Extrema for IC Non-IC Extrema

super+sub N extrema None
super+G & sub+G N extrema None

super+sub+G N � 1 extrema None
all-super N maxima(+) 2N�1 minima(+)
all-sub N minima(-) 2N�1 maxima(-)

Table 1. The extrema of the kurtosis function.
squared-kurtosis, since it allows us to circumvent the
need of estimating k(y) - and the associated numerical
hazard.

� During maximizing Eq. 5 via computing gradient w.r.t.
m, the division (due to the denominator in Eq. 5) in-
curs severe numerical di�culty. This can be circum-
vented altogether by working on a reproduced space v
derived by pre-whitening(Section 3.), which has been a
popular technique in the ICA literatures. Thereafter,
a gradient method leads to our KuicNet learning rule,
cf. Section 4.

� Once one IC is extracted, a deation algorithm (which
is well-established in numerical analysis literature) may
be applied to remove that IC from the mixture signals.
Thereafter, the other components may be extracted by
a recursive procedure, cf. Section 4.

2. EXTREMA OF KURTOSIS FUNCTION

We shall from now on - without loss of generality - reorder
the source signals according to the values of the kurtosis:

k(s1) � k(s2) � :::::k(sN ) (2)

Let p denote the number of the supergaussian and m that
of the subgaussian components. In general, p+m � N . In
the absence of zero-kurtosis processes1 then N = p+m.

Theorem 2..1 The kurtosis function as a function of
m, k(y) = k(y(m)), has the following extrema:

�� If k1 � 0 and kN � 0, i.e. assuming a (nontrivial)
hybrid mixture, then the kurtosis function k(y) (and
f(y)) meets the condition Eq. 1 on contrast function.

For this case, there are p maxima and m minima.
The output y extracts a supergaussian IC (resp. a sub-
gaussian IC) if and only if a local maximum (resp.
minimum) is reached. The extreme value equals the
kurtosis of the extracted independent component. (See
Figures 2(a)(b)(c).)

� For the homogeneous mixture cases, assuming kN > 0
i.e. all-supergaussian, then the maxima of k(y) yield
ICs, but not the minima. (See Figure 2(d).) Similar
arguments hold for teh case k1 < 0.

� For all the cases, all the non-negative maxima and non-
positive minima extract ICs and only these extrema
(i.e. neither negative maxima nor positive minima)
yield any pure ICs. (See Figure 2 and Table 1.)

The theorem follows directly the extrema property of kurto-
sis function as established in [5], illustrating (1) the number
of extrema (modulo a scaling factor), (2) the locations of
the extrema, and (3) the corresponding extreme values.
As exempli�ed in Figure 2, there are 3 ICs. If s1 and

s2 are supergaussian while s3 either subgaussian (i.e. case
\super+sub") or gaussian (i.e. case \super+G"), then ac-
cording to Table 1 there are N = 3 extrema. The two max-
ima of k(y) yield s1 or s2, while the only minimum yields
s3, cf. Figures 2 (a) and (c).

1A gaussian component must have zero kurtosis, but a zero-
kurtosis process needs not to be gaussian.
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Figure 2. The extrema w.r.t. the 2 free variables in
the normalized m space for 3 independent sources
(here 2 = 3-1). Cases: (a) super+sub, (b) su-
per+sub+G, (c) super+G, and (d) all-super.

Figures 2(d) shows a total of N + 2N�1 = 7 extrema for
the case of 3 \all-supergaussian" ICs. The 3 positive-valued
maxima yield 3 ICs, while the 4 (positive-valued) minima
yield mixed signals. (Note only 3 of the 4 minima are visible
in the �gure.)
For the all-supergaussian case (kN > 0), there are p = N

local maxima (with the extreme values being kl; 8l � p)
and 2N�1 (positive equal-valued) minima. See Figure 2
(d). The output y extracts one of the p supergaussian ICs
if and only if a local maximum of k(y(m)) is reached.
The local minima, on the other hand yield mixed outputs:

y =

NX
j

bjsj ; where bj = �

s
k�1
jPN

l=1
k�1
l

(3)

There are only 2N�1 local maxima, modulo the scale in-
variance (i.e. with scale factor = -1), although 2N possible
combinations of di�erent signs exist. The extreme values
are all equal to the homogeneous mean: (Fig. 2(d)).

k(y) = [

NX
l=1

k
�1
l ]�1

> 0 (4)

3. REPRODUCED SPACE VIA
PRE-WHITENING PROCESS

To �nd a solution y =mTx to (locally) maximize

MAXm �(y) =MAXm
E[(mTx)4]

E[(mTx)2]2
; (5)

then the division by E[y2] = E[(mTx)2] is vulnerable to
numerical mishap and thus must be avoided if possible. A
simple way out is by creating a reproduced space v. See
Figure 1.1.(c).
The reproduced space is generated by the following steps:

� First, we generate a normalized and pre-whitened pro-
cess v = P x. Each element of v corresponds to one of
the (conventional) principal components with variance
= 1.



� Note that y = wTv = wTPx;
So m = PTw. From now on, we work with the new
representation of y, cf. Figure 1.1.(c):

y = wTv

The key advantage of operating in the space v, is that

E[y2] = E[(wTv)2] = kwk2 ( = kbk2 ) (6)

has the appearance of a function of only w - instead of v
andw. (This attribute is also enjoyed by the source space s,
i.e. E[y2] = kbk2.) In this sense, v space exhibits a similar
property to the source space s. This is why v is called a
reproduced space of s.

Numerical Procedure for Reproducing v-space As-
suming that a total of M observation samples are available,
here we describe a numerically e�cient procedure for deriv-
ing v(t) and V, from x(t) and X, where

X = [x(1)jx(2)j � � � jx(M)]

V = [v(1)jv(2)j � � � jv(M)]

1. Compute a covariance matrix of x

Rx = XXT

2. Apply SVD to

XXT = U�2UT

3. Compute V as

v(t) = ��1UTx(t);

Thus
V = ��1UTX

So the covariance matrix of v

Rv = VVT = I

To verify the condition stated in Eq. 6, we note

E[y2] = wTVVTw = kwk2

Note also that

v(t) = Px(t) = PAs(t) = �s(t)

and
w = �b; b = �Tw

where � = PA is a unitary matrix. (Proof: I = VVT =
�SST�T = ��T .)
The ultimate goal is to �nd an inverse (i.e. de-mixing)

matrix W = ��1 = �T , (here we ignore permutation and
sign). So W has to be unitary too.

4. KUICNET LEARNING ALGORITHMS

It is numerically advantageous in working on the reproduced
space v instead of x, we have:

�(y(t)) = E[
(wTv(t))4

kwk4
] = E[g(t)]

where g(t) � (wT v(t))4

kwk4
. To derive a data adaptive learn-

ing scheme, we apply the gradient:

rwg(t) = 4(v
y3

kwk4
�w

y(t)4

kwk6
)

Since the kurtosis is scale-invariant (and so is g(t) ), without
loss of generality, we impose kwk = 1 to obtain:

rwg(t) = 4(vy(t)3 �wy(t)4) (7)

This leads to the following:

Algorithm 4..1 (KuicNet Learning Rule)
The KuicNet learning rule to extract a supergaussian com-
ponent is

�w(t) = +�[v(t)y3(t)�w(t)y(t)4] (8)

where � is a small positive learning rate.
Assuming that s1 > 0, then when the above learning rule
converges (to a local maximum), the extracted output is a
supergaussian source component.
Note: To extract a subgaussian component (assuming sN <
0), (1) +� is replaced by ��, and (2) w(t) should be con-
stantly re-normalized during the iterations[5].

Proof: The convergence occurs when and only when (1)

E[rwg(t)] = 4E[(vy(t)3 �wy(t)4)] = 0 (9)

and (2) the Hessian matrix Hw) is semi-negative-de�nite.
Pre-multiply Eq. 9 by �T ,

0 = �TE[(vy(t)3 �wy(t)4)] = E[(sy(t)3 � by(t)4)]

Examining its j-th element,

0 = bj(b
2
jkj �

NX
l=1

b
4
l kl) (10)

This leads to the following solution

b = [0; � � � 0;�1; 0 � � � 0]T (11)

which has all zeros except its j-th element, j � p, and is a
local maximum of

f(y) =
E[y4]

E[y2]2
=

NX
j=1

b4j

kbk4
kj + 3 =

NX
j=1

b
4
jkj + 3

under the constraint jjbjj2 = jjwjj2 = 1.
By the well-known transformation:

rwf(y) = �rbf(y) and Hw = �Hb�
T

since Hb is semi-negative-de�nite, then so is Hw (cf. [5]).
So we conclude that the solution(s) for Eq. 8 is w = �b;
is indeed a local stable maximum. It follows that the ex-
tracted output

y = wTv = bT�T�s = bT s = �sj

yields a supergaussian component.

Algorithm 4..2 (KuicNet for Extracting All ICs)
Three key steps are in the KuicNet Procedure:

1. Extraction of a supergaussian component:
The following learning rule may be adopted for extract-
ing a supergaussian IC (use \+" rule) or, respectively,
a subgaussian IC (use \�" rule). The initial weight
w(0) can be any normalized random vector.

�w(t) = ��[v(t)y3(t)�w(t)y(t)4] (12)

Numerically, it helps to apply re-normalization, cf.
Section 4., The trained vector w will converge to ex-
tract y = wTv as one of the supergaussian (resp. sub-
gaussian) ICs. For completeness, the �rst column of
the de-mixing matrix M is m1 = PTw:



2. Deation Procedure
The deation involves the removal of the extracted IC
from the reproduced space v(t), resulting in a newer
reproduced space V', formed by a set of N � 1 new
signals: v0(t). Assuming (WLOG) that s1 = �wTv is
the IC just extracted which is to be removed.
To �nd the subspace Worth orthogonal to w, we apply
SVD to I �wwT =

[ Worth w ]
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where Worth is an N � (N � 1) matrix, correspond-
ing to the (N-1) singular vectors. By the SVD de�-
nition, [wjWorth] forms a unitary matrix. Obviously,
V0 = WorthV has N � 1 rows, each row is a linear
combination of fs2, s3, ...., sN g. (Thus, the extracted
output y(t) should be independent of v0(t) - a fact may
be adopted for our on-line veri�cation.)
Now the recursion is basically all set. For example, if
w0 yields a second IC, then the second column of M
can be back-tracked as

m2 = PTWorthw
0

So can other components fmj ; j > 2g be derived.

3. Termination Rule: (Mode-Switching Rule)
The procedure terminates, when the output y consis-
tently yields a negative (resp. positive) kurtosis.

5. SIMULATION RESULTS

We have performed two experiments each with three
sources, with the deation procedure implemented, and the
KuicNet successfully recovered the source signals.
Experiment 1: Mixtures of speech signal and noise
Two speech signals are corrupted by a subgaussian interfer-
ence noise, with very high noise-signal-ratio. By listening
to the actual sounds, as well as inspecting the waveforms
depicted in Figure 3, we conclude that KuicNet can recover
(two) very clear speech signals from (three) almost non-
intelligible sounds.
Experiment 2: Mixture of image/speech signals
As shown in Figure 4, the KuicNet successfully recover one
(supergaussian) speech signal and two (subgaussian ) im-
ages from three multi-media mixtures.
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Figure 3. (a) (b) Original speech signals (c) one of
the three hybrid mixtures - corrupted by uniform
random noise; (d) recovered noise; (e) and (f) re-
covered and (well) separated speech signals
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Figure 4. (a) One of the three hybrid mixtures.
(b) recovered speech signal (c) and (d) recovered
images


