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ABSTRACT

This study proposes a new set of feature parameters based
on subband analysis of the speech signal for classi�cation of
speech under stress. The new speech features are Scale En-
ergy (SE), Autocorrelation-Scale-Energy (ACSE), Subband
based cepstral parameters (SC), and Autocorrelation-SC
(ACSC). The parameters' ability to capture di�erent stress
types is compared to widely used Mel-scale cepstrum based
representations: Mel-frequency cepstral coe�cents (MFCC)
and Autocorrelation-Mel-scale (AC-Mel). Next, a feedfor-
ward neural network is formulated for speaker-dependent
stress classi�cation of 10 stress conditions: Angry, Clear,
Cond50/70, Fast, Loud, Lombard, Neutral, Question, Slow,
and Soft. The classi�cation algorithm is evaluated using a
previously established stressed speech database (SUSAS)[4].
Subband based features are shown to achieve +7:3% and
+9:1% increase in the classi�cation rates over the MFCC
based parameters for ungrouped and grouped stress closed
vocabulary test scenarios respectively. Moreover the aver-
age scores across the simulations of new features are +8:6%
and +13:6% higher than MFCC based features for the un-
grouped and grouped stress test scenarious respectively.

1. INTRODUCTION

Stress is de�ned as perceptually induced deviation in the
production of speech from that of the normal production of
speech [3]. It is known that stress-based variations in speech
production can be substantial and will hence deteriorate the
performance of speech processing applications [1, 6, 3, 5]. If
the knowledge of stress and its type could be determined then
this extra information could be incorporated into a speech
recognition or coding system to improve system performance
[3]. One real-time application of stress detection and classi-
�cation is for a metropolitan emergency telephone system in
which such a system can be used to direct the emotional tele-
phone calls to a priority operator [3]. Such a system could
also be used for aircraft voice communication monitoring.
The manner in which stress manifests itself in speech sig-

nals has been studied by many researchers. These studies in-
vestigated the e�ects of stress in speech in di�erent domains
in order to derive reliable acoustic features for stress classi-
�cation [1, 6, 3]. For example in [6] glottal waveforms were

�R. Sarikaya was with Clemson University when this work was

performed. He is now with Robust Speech Processing Laboratory,

Duke University, Durham, NC 27708-0291

modeled and parametrized for the purpose of investigating
the variations in glottal excitation across stress conditions.
In [9], the acoustic-phonetic di�erences among various stress
conditions were considered in the following parameter do-
mains: energy bands, spectral center of gravity, spectral tilt,
pitch, formant locations, and duration. They observed the
most reliable trends in the energy migration in frequency do-
main. It was also noted that for Loud and Lombard speech,
the speakers typically move additional energy into low to
mid-bands which is the frequency range of greatest sensi-
tivity of the human auditory system. We also observed the
same phenomenon for stressed speech which motivated us to
be able to formulate a good representation of energy and en-
ergy migrations among subbands. In [3], Mel-scale cepstrum
based parameters for stress classi�cation were proposed. Al-
though Mel-scale analysis incorporates the properties of the
human auditory system into analysis, performing Mel-scale
warping on the vocal tract spectra inherently ignores the ex-
citation spectra which is the major relayer of stress. It is
known [6] that the stress information in the speech signal is
mainly carried by the excitation rather than the vocal tract
in the linear modeling of speech. Therefore, an e�ective fea-
ture set must address the issues outlined above.
We propose a new set of features based on wavelet analy-

sis or equivalently the multirate subband analysis of stressed
speech. The resulting parameters have special features which
make them useful in this application. First, the subband
decomposition provides a local spectral representation for
stressed speech. In the short-time Fourier transform (STFT)
of the speech signal, time-frequency resolution is �xed once a
window has been chosen for that speech segment. However,
the multiresolution nature of the wavelet analysis permits
the observation of local spectral variations within the win-
dowed segment. Second, perceptual division of the frequency
axis can be obtained by appropriate choice of the wavelet
packet tree to account for the human auditory property. Fi-
nally, better frequency localization compared to STFT based
methods can be achieved in order to model energy migrations
among subbands by choosing �lters which have maximum
vanishing moments.

2. FEATURE EXTRACTION

2.1 Subband Decomposition via Wavelet Packets

Although a detailed discussion of wavelets, wavelet trans-
form and wavelet packets is beyond the scope of this paper,
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Figure 1: Frequency divisions (a)Mel-Scale, (b) 21-
subband, (c) 18-subband wavelet packet trees.

we refer readers wishing to see a complete discussion pre-
sented in [8]. The Wavelet Transform is de�ned as the inner
product of a signal x(t) with a collection of wavelet functions
 a;b(t) in which these wavelet functions are scaled (by a) and
translated (by b) versions of the prototype wavelet;  (t).
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Discrete time implementation of wavelets and wavelet
packets are based on iteration of two channel perfect recon-
struction �lterbanks. Contrary to wavelets which are ob-
tained through iterations on the low pass branch, the �lter-
bank tree can be iterated on either branch at any level re-
sulting in a tree structured �lterbank which we call a wavelet
packet �lterbank tree. The resultant transform creates a di-
vision of the frequency domain that represents the signal op-
timally with respect to the applied metric. Because of the na-
ture of the analysis in the frequency domain, it is also called
subband decomposition where subbands are determined by
a wavelet packet �lterbank tree.
In this study two wavelet packet trees are used with the

goal of perceptual division of the frequency axis. The result-
ing wavelet packet divisions and the Mel-scale division are
shown in the Figure 1.

2.2 Subband Based Feature Extraction Procedure

The speech signal is sampled at 8kHz and divided into
overlapping frames of equal size. For word tokens, energy
based end-point detection is performed. For phoneme to-
kens voiced/unvoiced classi�cation is performed by using the
Simple Inverse Filter Tracking (SIFT) algorithm [10]. Then,
voiced phones are extracted from the stressed words to be
used in classi�cation. Two frame lengths have been used for
feature extraction to explore the e�ect of frame lengths on
classi�cation results. Without regarding the duration of the
word or phoneme token, 40 frames are obtained with a vari-
able skip rate. For 16 msec frame size the minimum degrees
of overlap for phonemes and words is 43% and 3%, respec-
tively. For 24 msec frame size the corresponding quantities
are above 56% and 37% for phonemes and words, respec-
tively.
The steps of feature extraction are explained in the block

diagram given in Figure 2. After segmentation, each frame
of speech is decomposed into subband signals by using the
perceptual wavelet packet transform which is implemented
by cascaded �lterbanks along the wavelet packet tree. The

output of this transformation is a set of subband signals or
equivalently transform coe�cients.

2.3 Scale Energy Parameters (SE)

The energy of the subsignals for each subband is computed
and then scaled by the number of transform coe�cients in
that subband. This operation results in an energy vector
which is normalized by the total energy in that frame to give
the SE parameters:

S
(k)
i =

P
m�i

[(W x)(i);m)]2
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(3)

SE
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S(k)

jS(k)j (4)

W x : wavelet packet transform of x,
k : frame number,
i : subband number (i = 1; 2:::L),
Ni : number of coe�cients in the ith subband,
n : spans all available frames, and
SE: parameter vector for each frame.

SE parameters represent the distribution of energy among
various frequency bands for a given frame. Since we use the
orthogonal �lters corresponding to Daubechies's orthogonal
wavelets in the wavelet packet transform, energy is preserved
in the transformation.

2.4 Autocorrelation-SE Parameters (ACSE)

ACSE parameters are motivated by AC-Mel parameters [3].
First proposed in [1], ACSE parameters are given by,

ACSE
(l)
(i)(k) =

Pk+T

n=k [SE
(n)(i)SE(n+l)(i)]2

argmaxj(ACSE
(l)
(i)(j))

(5)

where k is the frame index for ACSE parameters, T is the
correlation window length, j is an index which spans all cor-
relation coe�cients in a given scale and l is the correlation
lag over frames. When l = 0, ACSE models the normalized
power in subband i. It is both a measure of the frame-to-
frame correlation variation of SE parameters and the relative
change in subband energies due to stress. T and l are cho-
sen 6 and 1, respectively, as suggested in [3] for the entire
simulations.

2.5 Subband based Cepstral Parameters (SC)

SC parameters are derived from SE parameters by applying
the following transformation:

SC(k) =
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where k
0

is the number of SC parameters, pl is the root value
of the l-th frequency band and L is the total number of
frequency bands. A slightly di�erent version of these features
was proposed in [11] for recognition in noisy environments.
Because of the similarity to root-cepstral [7] analysis they are
named as subband based cepstral analysis. The advantage
of this representation is that the frequency bands can be
emphasized or deemphasized by appropriate choice of pl for
each subband. Since we are processing noise free stressed
speech we have used uniform pl = 0:375 [7] for all subbands.
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Figure 1: Block diagram for subbands based feature
extraction procudure.

2.6 Autocorrelation-SC Parameters (ACSC)

ACSC has a mathematical expression similar to ACSE and
has a dual interpretation. The relation between SC and
ACSC is same as the relation between SE and ACSE param-
eters. They can be interpreted as the frame-to-frame cor-
relation of SC parameters and relative changes in subband
energy which models energy migration among subbands.

2.7 MFCC and AC-Mel

A detailed performance analysis of MFCC based parameters
has been performed in [3] in the context of stress classi�ca-
tion. In [3], four MFCC based parameters were proposed and
MFCC and AC-Mel were found to outperform the other pro-
posed features. In order to compare the performance of the
subband based features with the MFCC based features, we
duplicate part of their simulations in this study. MFCC pa-
rameters are obtained in the frequency domain with critical
band windowing of the speech spectrum. AC-Mel parame-
ters are derived from from MFCC parameters the same way
ACSE parameters obtained from SE parameters.

3. STRESSED SPEECH CLASSIFICATION

3.1. Stress Classi�cation

One of the two sets of 5 word speech corpus obtained from
SUSAS [4] is used in the training phase while the other in
the testing phase. The training set is composed of �ve words:
break, east, freeze, help, steer spoken under 10 stress condi-
tions. The testing set is composed of same set of words but
spoken at a second time by the same speaker. We used the
same vocabulary set for testing in order to simulate the in-
tra speaker variability of stress conditions across same set of
words for a given speaker. In order to provide a fair compar-
ison, the data set chosen for training and testing here is the
same data set used in [3].

3.2. Neural Network Classi�er

A feedforward multi-layer-perceptron (MLP) architecture
with backpropagation training method is formulated as the
stress classi�er. The size of the input layer is dependent on

the feature vector size which varies between 612 to 840 (40
frames x 21 subbands) for each token. Although, there is not
a clear rule for choosing the number of layers and the number
of neurons in a given layer, Kolmogorov's Mapping Neural
Network Existence Theorem [12] indicates that a four layer
network having d processing units in the �rst layer and 2d+1
units in the next layer is su�cient to map an arbitrary con-
tinuous function. However, since the proof of the theorem is
not constructive, it is not possible to know how to determine
the key quantities of the transfer functions. The theorem
simply tells us that such a network must exist. Therefore,
we set the size of the �rst hidden layer and the second hidden
layers to 1200 and 300 neurons, respectively. The output rep-
resents the stress classes. The stress condition which receives
highest score in the output layer is selected as the winner.
The classi�er used in our simulations is not optimal by any
means. However the reader should note that the primary
goal of this work is not to �nd the best classi�er but rather
to compare the performance of the subband based features
with MFCC based features for a given classi�er.

4. SIMULATIONS AND DISCUSSIONS

4.1 Simulation Scenarios

In order to optimize the performance of the features under
consideration frame length, speech token type, and number
of subbands are treated as variables. Wavelet packet trees
with 18 and 21 subbands approximating Mel-scale frequency
division were used to generate features. Frames of size 16
msec and 24 msec are used to investigate the e�ect of frame
length on the performance of the generated features. Ad-
ditionally, the features are derived from the word and the
chosen voiced phoneme within the word with the goal of in-
vestigating e�ects of stress on the phoneme level and isolated
word level. The tests were conducted for ungrouped-stress
and grouped-stress closed-vocabulary cases. Consequently,
16 simulations were conducted for each of the six parame-
ters sets.

4.2. Discussion

In ungrouped stress classi�cation, Angry, Loud, Lombard,
Cond50/701 and Question stress styles consistently obtained
relatively high classi�cation rates in every parameter domain
whereas Neutral, Fast and Slow styles had a very low classi-
�cation rates. These 3 stress conditions are confused during
the classi�cation. These styles have very similar spectral
distributions. The only distingushing feature among these
styles is phone duration. However, we obtained 40 frames
from each token regardless of its duration. This is essen-
tially the linear time warping of the data. Normalizing the
duration accounts for the low classi�cation rates for these
styles. The results shown in the Table 1 are the average of
results obtained by using di�erent number of subbands (pa-
rameters), di�erent frame lengths and di�erent token types.
The reader wishing to see individual simulation results for
each scenario should look at [2]. While the overall classi�ca-
tion rates of MFCC based parameters are around 45%, sub-
band based parameters achieved higher classi�cation rates.

1Represents stressed speech produced during computer work-

load tasks.



Table 1: Ungrouped Stress Classi�cation

AVERAGE STRESS CLASSIFICATION SCORES (%)

STRESS MEL-CEPSTRAL SUBBAND FEATURES
CLASS MFCC AC-MEL SE SC ACSE ACSC

Angry 90.0 65.0 57.5 95.0 57.5 57.5
Clear 7.5 17.5 15.0 22.5 15.0 17.5

Cond50/70 66.2 55.0 72.5 71.2 67.5 70.0
Fast 5.0 32.5 10.0 15.0 35.0 37.5
Loud 82.5 80.0 45.0 82.5 85.0 47.5

Lombard 60.0 52.5 75.0 90.0 57.5 70.0
Neutral 0.0 12.5 5.0 10.0 10.0 10.0
Question 55.0 70.0 80.0 90.0 97.5 85.0
Slow 0.0 22.5 2.5 7.5 32.5 7.5
Soft 50.0 30.0 85.0 95.0 47.5 57.5

OVERALL 44.3 45.4 47.0 59.1 52.5 48.4

Table 2: Grouped Stress Classi�cation

AVERAGE STRESS CLASSIFICATION SCORES (%)

STRESS MEL-CEPSTRAL SUBBAND FEATURES
CLASS MFCC AC-MEL SE SC ACSE ACSC

G1 100.0 93.7 67.5 96.3 76.3 78.8
G2 90.6 73.1 95.0 95.6 90.0 81.8
G3 10.0 32.5 10.0 7.5 20.0 22.5
G4 45.0 60.0 55.0 87.5 87.5 75.0
G5 5.0 20.0 2.5 2.5 12.5 2.5
G6 0.0 12.5 10.0 12.5 27.5 15.0
G7 47.5 50.0 72.5 72.5 57.5 62.5

OVERALL 61.4 59.5 60.4 70.0 65.7 60.2

In particular, SC parameter received 59:1% which is 13:6%
higher than MFCC based parameters on average.

In order to investigate whether improved classi�cation
scores could be obtained, some of the stress conditions are
combined into groups. Angry and Loud styles are combined
in (G1) and Cond50/70, Neutral and Soft styles are grouped
under (G2). Each of the other stress styles are treated as a
separate group of its own :Fast (G3), Question (G4), Slow
(G5), Clear (G6), and Lombard (G7). Although this group-
ing may not be optimal for our classi�er, it was the same
grouping proposed in [3]. Stress grouping improved the per-
formance of each parameters set between 11% to 17%. G1
and G2 received the highest scores across all parameters.
G3, G5 and G6 had poor scores because of the duration
normalization required by our classi�er. The results given
in Table 2 indicate that SE and ACSC performed as well
as MFCC based parameters whereas ACSE and SC received
higher scores. According to results of these simulations SC
consistently yielded the highest classi�cation rates.

The results given in Table 1 and 2 are the average scores
across simulations. The best scores of each parameter set
on individual simulations are given in Table 3. In individ-
ual simulations, subband parameters achieved +7:3% and
+9:1% higher classi�cation scores than MFCC based fea-
tures in ungrouped and grouped stress classi�cation. The
simulation results for ungrouped-stress indicate that com-
bination of 21 subbands, word tokens and 24 msec frame
size gives the highest rates for all parameters. For grouped-
stress simulations the optimum frame size and the number of
subbands were again 24 msec and 21 subbands with the ex-
ception of ACSC which obtained highest score when 18 sub-
bands were used. An interesting observation is that all au-
tocorrelation parameters (AC-Mel, ACSE, ACSC) obtained
the highest rates when word tokens instead of phoneme to-
kens were used whereas the non-autocorrelation parameters

Table 3: Best Scores of Each Feature
BEST STRESS CLASSIFICATION SCORES (%)

TESTING MEL-CEPSTRAL SUBBAND FEATURES
CASES MFCC AC-MEL SE SC ACSE ACSC

Ungrouped 50.9 58.2 58.2 65.4 65.4 56.4
Grouped 63.6 67.3 70.9 76.4 74.6 69.1

(MFCC, SC, SE) obtained the highest rates when phoneme
tokens were used.

4. CONCLUSIONS

Four new subband based features have been proposed for
classi�cation of speech under stress. A sequence of simula-
tions has been conducted for di�erent frames sizes, di�erent
wavelet packet trees and di�erent speech tokens to �nd the
optimal combination of these free variables to give the high-
est stress classi�cation scores for both subband based and
MFCC based parameters. Simulation results indicate that
the new parameters are better suited for stress classi�cation
than the MFCC based parameters according to both average
scores and the individual best scores. In particular the av-
erage score of the subband based cepstrum (SC) parameters
achieved +8:6% and +13:6% higher scores than the best of
the MFCC based features for grouped and ungrouped stress
classi�cation simulations. The best performance of SC on
individual simulations achieved +7:3% and +9:1% increases
in the classi�cation rates over the best of MFCC based pa-
rameters for grouped-stress and ungrouped-stress scenarios,
respectively.
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