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ABSTRACT

The 1=f family of fractal processes provides useful mod-
els for the extraordinary variety of natural and man-made
phenomena that exhibit long-term dependence. Using algo-
rithms based on a multiscale state-space representation, we
address the problems of parameter estimation of discrete
1=f signals in white noise, estimation of deterministic sig-
nals in 1=f noise, and prediction of discrete 1=f processes.
Among other results, distant past data are shown to have a
dramatically greater e�ect on these estimators than when
ARMA processes are involved.

1. INTRODUCTION

The 1=f processes are empirically de�ned as having mea-
sured power spectral density of the form

Ss(!) � �2s
j!j

over several decades of frequency !, where  is a parameter
in the range 0 �  � 2. As opposed to the traditional au-
toregressive moving-average (ARMA) models characterized
by correlation functions with exponential decay, 1=f pro-
cesses exhibit long-term dependence characterized by cor-
relation functions with polynomial-type decay. As a result,
these processes provide useful models for the extraordinary
variety of natural and man-made phenomena that exhibit
long-term dependence. A more general class of processes,
called nearly-1=f , has measured power spectral density that
is bounded according to

�2L
j!j � Ss(!) � �2U

j!j
where �2L and �2U satisfy 0 < �2L � �2U <1.

The data modeled as a 1=f process is generally repre-
sented as a discrete sequence. The discretization of the time
axis limits the highest frequency at which 1=f spectral be-
havior can be observed. Therefore, of primary interest is the
spectral behavior at low frequencies, which govern the long-
term dependence of these processes. We de�ne a discrete
1=f (or nearly-1=f) process as having 1=f (or nearly-1=f)
spectral behavior in the neighborhood of the spectral ori-
gin. An example of a discrete 1=f process is the discrete
fractionally di�erenced Gaussian noise (fdGn) process [5][6].
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The power spectrum of a discrete or continuous 1=f
process is not integrable in the neighborhood of the origin
for  � 1. This phenomenon, called the infrared catastro-
phe, has been interpreted as revealing that the process as
inherently nonstationary [7][8]. In this paper, we assume
that the 1=f process is stationary with the shape of the
power spectrum changing from 1=f to at below a certain
frequency, although this low-frequency roll-o� is not always
observed in natural signals (see [7] and the references cited).

The need for e�cient and robust signal processing al-
gorithms involving fractals arises in many engineering con-
texts [2][4][11]. This paper develops a multiscale state-space
representation for �nite-length 1=f processes that is partic-
ularly well-suited for addressing several signal processing
problems involving �nite data lengths, such as prediction
and signal estimation.

2. MULTISCALE STATE-SPACE

REPRESENTATION

Van der Ziel [9] modeled continuous 1=f processes as the
weighted superposition of a continuum of uncorrelated ran-
dom processes. These models form the basis for the anal-
ogous discrete-time models used in this paper. Let s[n] be
the superposition of uncorrelated �rst-order (single time-
constant) autoregressive processes

s[n] =

mX
m=m

xm[n]

where xm[n] has correlation function Rm[k] = fm�
jkj
m . The

spectrum of s[n] is the superposition of the spectra of the
autoregressive processses:

Ss(
) =

mX
m=m

fm(1� �2m)

1 + �2m � 2�m cos 

:

When weights fm and time-constants �m are given by

�m =

�
2

�m +
p
�2m + 4

�2

fm =
�2�(2�)m

��1m � �m

where �, �2, and  are parameters satisfying 1 < � <1,
�2 > 0, and 0 <  < 2, then for m ! �1 and m ! 1,
Ss(
) has nearly-1=f spectral behavior, with parameter ,



in some neighborhood of the spectral origin 0 < j
j < �.
Therefore s[n] is a discrete nearly-1=f process.

The described models would require an in�nite number
of state variables to completely describe the discrete 1=f
process over all frequencies. An appropriately selected �-
nite subset of the in�nite component processes is su�cient
to generate nearly-1=f spectral behavior over a �nite fre-
quency range. We select m so that component processes
fxm[n]g, m > m are e�ectively white, and replace these
processes by a single white component process. For �nite-
length processes, the data length e�ectively constrains the
lowest observable frequency of the power spectrum. We se-
lect m so that component processes fxm[n]g, m < m have
insigni�cant total power above this frequency. Discarding
these processes creates a low-frequency roll-o� where the
spectrum is at rather than 1=f below a certain frequency.
When data length is increased by a factor of k, the lowest
observable frequency decreases, and 2

2�
log� k additional

component processes are required to generate nearly-1=f
spectral behavior above this new frequency.

The state-space description for a measurement process
z[n], composed of a �nite-order 1=f process corrupted by
additive white measurement noise w[n], is de�ned by

x[n+ 1] = Ax[n] +Bu[n]

z[n] = Cx[n] + w[n]

where u[n] is a (m � m + 1)-dimensional driving vector
of uncorrelated, zero-mean white Gaussian processes with
unit variance, and w[n] is a zero-mean white Gaussian noise
process with variance �2w. Block-diagonal matrices A and
B

A =

2
4 Am 0

. . .

0 Am

3
5 B =

2
4 Bm 0

. . .

0 Bm

3
5

are composed of the state-space matrices for each com-
ponent autoregressive process, and the block-row matrix
C =

�
Cm : : : Cm

�
forms the superposition of com-

ponent autoregressive processes. The initial condition x[0]
is chosen so that the system begins in steady-state. We
de�ne the standard system description with state vector
x[n] = [xm[n]; : : : ; xm[n]]

T composed of the present states
of the component processes, and state-space matrices

Am = �m Bm =
�
fm(1� �2m)

�1=2
Cm = 1: (1)

It will prove useful to de�ne an equivalent augmented system
description with 2M -dimensional state vector

x[n] = [xm[n]; xm[n� 1]; : : : ; xm[n]; xm[n� 1]]T

composed of the present and most recent past states of the
component processes, and state-space matrices

Am =

�
�m 0
1 0

�
Bm =

� �
fm(1� �2m)

�1=2
0

�
Cm =

�
1 0

�
: (2)

3. PARAMETER ESTIMATION

We consider the problem in which we have observations z[n]
of a discrete zero-mean Gaussian 1=f process s[n] with un-
known parameters  and �2, corrupted by zero-mean inde-
pendent identically distributed (i.i.d.) Gaussian noise w[n]

with unknown variance �2w, that is statistically independent
of s[n], so

z[n] = s[n] +w[n]; 1 � n � N (3)

where N is the length of the observed data. The observa-
tions take the form of an N -dimensional Gaussian random
vector z with probability density function

fZ(z; �) = [det (2��z(�))]
�1=2 exp

h
�1
2
z
T��1z (�)z

i
where the covariance matrix �z(�) is indexed by the vector
of unknown parameters � = f; �2; �2wg.

An iterative estimate-maximize (EM) algorithm [3] �nds
the maximum likelihood (ML) estimate for the parameter
vector �. The complete data is de�ned as the observed sig-
nal z together with the samples fxm[n]gN�1n=0 of each compo-
nent autoregressive process of the 1=f signal, each of which
may be viewed as a column vector xm.

The EM algorithm begins with initial parameter esti-

mates �[1] = f[1]; �2[1]; �2[1]w g and iterates between an esti-
mation and maximization step, until it converges to a sta-
tionary point of the likelihood function. On the lth itera-
tion, the estimation step e�ciently calculates the following
statistics of the complete data by applying the �xed-interval
Kalman smoothing equations [1] to the observed data, using
the augmented system description (2) of a 1=f signal with

parameters [l] and �2[l] and white noise with parameter

�
2[l]
w :

x̂[l]m[n] = E
�
xm[n] j z; �[l]

�
(4)

x̂[l]mm[n; n� 1] = E
�
xm[n]xm[n� 1] j z; �[l]

�
(5)

x̂
[l]
mk[n] = E

�
xm[n]xk[n] j z; �[l]

�
(6)

for 0 � n � N � 1 and m � m; k � m. Collecting the

estimates fx̂[l]m[n]g into a column vector x̂
[l]
m, note that (4)

and (5) generate the main diagonal and adjacent diagonals
of dxmxTm = E

�
xmx

T
m j z; �[l]

�
;

which are su�cient to compute tm = tr(H�1
m

dxmxTm) for

H�1
m =

2
66664

1 ��m 0
��m 1 + �2m ��m

. . .
. . .

. . .

��m 1 + �2m ��m
0 ��m 1

3
77775 (7)

since this matrix is tridiagonal.
The maximization step then generates the parameter

estimates for the subsequent iteration. The estimate for
the variance of the white noise

�2[l+1]w =
1

N

0
@zT z� 2zT

mX
m=m

x̂
[l]
m +

NX
n=1

mX
m=m

mX
k=m

x̂
[l]
mk[n]

1
A

is straightforward. We solve the equation

mX
m=m

(2m+ 1�m�m)
�[l+1]m

2�m�2m
tm = 0



� = 4 RMS error in  % RMS error in �2

 m m N=50 N=100 N=50 N=100
0.33 -5 7 0.2075 0.1541 43.31% 34.37%
1.00 -7 2 0.1567 0.1257 15.82% 10.93%
1.67 -11 1 0.1362 0.1182 41.06% 31.88%

Table 1: RMS error in estimates of  and �2 as a function
of data length N for the special case of no noise.

using a root-�nding algorithm to obtain [l+1]. Finally, this
value is used to �nd

�2[l+1] =
1

NM

mX
m=m

�[l+1]m

�m�2m
tm:

Table 1 illustrates the performance of the parameter esti-
mation algorithm based on Monte Carlo simulations for the
noise-free case �2w = 0.

4. SIGNAL ESTIMATION IN 1=f NOISE

The 1=f process is often a noise process obscuring another
signal of interest. Suppose we have observations z[n] of a
deterministic signal y[n] obscured by a discrete zero-mean
Gaussian 1=f noise process s[n] with unknown parameters
 and �2, so

z[n] = y[n] + s[n]; 0 � n � N � 1

where N is the length of the observed data. The signal
is parameterized as a linear combination of a �nite set of
known basis signals bp,

y[n] =

PX
p=1

�pbp[n]

for unknown real parameters �1; : : : ; �P . Again, an EM
algorithm �nds the ML estimate for the parameter vector
� = f�1; : : : ; �P ; ; �2g. The complete data is de�ned as
the observed signal z together with the samples xm of each
component autoregressive process of the 1=f process.

To calculate the statistics of the complete data for the
estimation step, on the lth iteration we form the modi�ed
observations sequence

z
0[l] = z �

PX
p=1

�[l]p :

The �xed-interval Kalman smoothing equations [1] are ap-

plied to the modi�ed observations z0
[l]
, using the augmented

system description (2) of a 1=f signal with parameters [l]

and �2[l], to �nd:

x̂[l]m[n] = E
h
xm[n] j z0[l]; �[l]

i
(8)

x̂[l]mm[n; n � 1] = E
h
xm[n]xm[n� 1] j z0[l]; �[l]

i
(9)

for 0 � n � N � 1 and m � m � m. Note that (8) and (9)
generate the main diagonal and adjacent diagonals of

dxmxTm = E
h
xmx

T
m j z0[l]; �[l]

i
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Figure 1: Normalized error covariance in the estimate of the
slope of a deterministic a�ne signal in 1=f noise of known
parameters for several values of , as a function of data
length N .

which are su�cient to compute tm = tr(H�1
m

dxmxTm) where
H�1
m is de�ned in (7).
The maximization step generates the parameter esti-

mates for the subsequent iteration:

[l+1]  
mX

m=m

(2m+ 1�m�m)
�[l+1]m

2�m�2m
tm = 0

�2[l+1] =
1

NM

mX
m=m

�[l+1]m

�m�2m
tm

�[l+1]p = (bTp bp)
�1
b
T
p

0
@z�X

k 6=p

�
[l]
k bk �

mX
m=m

x
[l]
m

1
A :

We consider the special case of estimating a determin-
istic a�ne signal y[n] = �1+�2n in 1=f noise of known pa-
rameters. Fig. 1 illustrates the normalized error covariance
in the estimate of the slope �2 of the signal as a function of
data length. For Brownian motion ( = 2), it is well-known
that the error covariance is proportional to 1=N , whereas for
white noise ( = 0), the error covariance is asymptotically
proportional to 1=N3. For intermediate values of , the er-

ror covariance is asymptotically proportional to 1=N (3�) .
As  increases, it becomes increasingly di�cult to estimate
the slope of an a�ne signal in 1=f noise.

5. PREDICTION

Given observations of the form (3) (expressed as an N -
length column vector z) with known parameters , �2, and
�2w, we consider estimates of s[n] for n � N . For the
single-step prediction problem, ŝ[N ] = E [s[N ] j z] is ob-
tained by applying the Kalman �lter [1] to the observed
data, using the standard system description (1). This algo-
rithm also produces the prediction error covariance Rs[N ] =
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Figure 2: Relative normalized single-step prediction error
covariance (Rs[N ]�Rs[1])=�2s vs. data lengthN for several
random processes.

E
�
(s[N ]� ŝ[N ])2 j z

�
; which depends only on the number

of observed samples N and the parameters , �2, and �2w.
We examine how Rs[N ] decreases with N relative to its
minimum value

Rs[1] = lim
N!1

Rs[N ] =
1

2�

Z �

��

log Ss(
)d
:

for the noise-free case �2w = 0. In general, when Rs[N ]
converges to Rs[1] quickly, additional observations of past
samples have limited value in prediction, implying that the
memory of the process is short. On the other hand, when
Rs[N ] converges to Rs[1] slowly, the memory of the process
is long. Fig. 2 shows (Rs[N ] � Rs[1])=�2s as a function
of N for several representative ARMA and 1=f processes.
The ARMA processes have exponential convergence while
the 1=f processes have polynomial convergence, reecting
that 1=f processes have much more persistent memory than
ARMA processes.

Multi-step predictions ŝ[N +M ] for M � 1 given ob-
servations z are obtained by again applying the Kalman
�lter. The algorithm provides the prediction error covari-
ance RM

s [N ] = E
�
(s[N +M ]� ŝ[N +M ])2 j z

�
which de-

pends on the number of observed samples N , the prediction
distance M , and the parameters of the observations. We
analyze how the multi-step predictiction error covariance
increases as a function of M relative to its maximum value

R1s [N ] = lim
M!1

RM
s [N ] = var(s[n])

for the special case of �2w = 0. Rapid covergence of RM
s [N ]

to R1s [N ] indicates a process with short memory. Fig. 3
shows (R1s [N ] � RM

s [N ])=�2s as a function of M for sev-
eral representative ARMA and 1=f processes. Again, the
autoregressive and moving-average processes have exponen-
tial convergence while the 1=f processes have polynomial
convergence, reecting that 1=f processes have much more
persistent memory than ARMA processes.
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Figure 3: Relative normalized multi-step prediction error
covariance (R1s [N ] � RM

s [N ])=�2s vs. prediction distance
M for several random processes, with observed data length
N = 104.
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