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ABSTRACT

In this paper we present a technique for the blind iden-
tification of single-input multiple-output (SIMO) pole-zero
(PZ) systems using only the second order statistics of the
system output data. The system input is treated as an un-
known deterministic sequence, and hence, restrictive i.i.d.
assumptions on the input sequence are not required. We
estimate the poles and zeros of the channels in two steps :
1) estimate product of all permutations of a numerator and
a denominator polynomial from two different channels, and
2) extract individual numerator and denominator polyno-
mials for each channel from above estimate. Our technique
performs well even with short records of data.

1. INTRODUCTION

The multichannel blind identification (BI) problem arises in
a wide variety of engineering applications. The feasibility
of identifying nonminimum phase finite impulse response
(FIR) channels using only the second order statistics (SOS)
of the system multichannel output data was first demon-
strated in [1]. Since then, considerable work has been done
in this area both in algorithm development and fundamen-
tal analysis (see [2] and references therein). However, the
infinite impulse response (IIR) case with multichannel PZ
systems has been relatively unaddressed. In [4] two tech-
niques, the linear prediction (LP) approach and the general-
ized subspace (GS) approach, for second order blind source
extraction for multiple-input multiple-output (MIMO) PZ
systems have been presented. The above two approaches
address the general problem of MIMO PZ system identifica-
tion when the number of inputs is strictly less than the num-
ber of outputs. They require the sources to be i.i.d., and in
cases where source separation is necessary, the sources are
assumed to be non-Gaussian.

The LP approach models the output of the irreducible
multichannel PZ system as a multichannel autoregressive
(AR) system of finite order. Once the parameters of the
AR system have been solved for, an estimate of the source
sequence is obtained. Note that the parameters of the chan-
nels are not estimated using this method. Also, this method
requires large blocks of data to provide reasonable correla-
tion estimates. However, the method is quite robust to
over-parameterization. The GS approach is based on the
canonical right matrix fraction description (MFD) of ratio-
nal functions [3]. This method first estimates the minimal
polynomial basis (MPB) and then extracts the right fac-
tor matrix using the LP approach. This subspace approach
performs better than the LP approach especially when only
short records of data are available. However, it is not robust
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to model order mismatches.

Our work on the SIMO PZ BI problem was motivated
by our investigation into the feasibility of providing reli-
able fault diagnostics and monitoring using Acoustic Emis-
sions (AE) [6][7]. AEs are ultrasonic waves created due to
the formation/propagation of a crack in a material. These
waves propagate through the material and can be recorded
by piezo-electric sensors placed strategically on the sur-
face. With this recorded data at various sensors the need to
identify the propagation characteristics (channel sequence)
and crack (input) sequence for subsequent crack localiza-
tion/characterization arises naturally. This is obviously a
SIMO BI problem. However, the situation in this context
is quite different from the communication scenario that has
motivated research in SIMO BI in the past several years.
For communication scenarios BI methods make standard as-
sumptions of FIR channels and/or white, persistent sources.
In the fault monitoring case, from experimental data, we
have found that the above assumptions are no longer valid.
This initiated our investigation into BI of SIMO PZ sys-
tems with a non-white input sequence. In this paper we
deal only with the persistent input sequence case for SIMO
PZ systems. A method for SIMO PZ BI when the input
sequence is of finite length is discussed in [8].

Our interest focuses on SIMO systems. Though the
SIMO problem can be addressed by the above methods, the
structure of the single input case enables us to use a sim-
pler approach that can provide both the channel and input
sequence estimates. The least squares (LS) method pre-
sented in this paper takes advantage of the commutativity
property of the convolution operation. A LS solution in the
SIMO FIR case using the same property has been presented
in [5]. In our method the input is treated as an unknown
deterministic sequence, and in consequence, unlike existing
methods for multichannel PZ system identification it is not
limited to i.i.d. input scenarios. In this paper, we assume
prior knowledge of the model orders. Our technique is sen-
sitive to model order mismatches especially in the context
of the channel parameter estimates. However, reasonable
robustness to model order mismatches in terms of input
sequence estimates has been observed in our simulations.

2. THE PROPOSED LS TECHNIQUE
2.1. The SIMO PZ Model

Consider an M-channel SIMO system whose channel trans-
fer functions are rational, i.e., the z-transform of the impulse

response of the " channel is given by,

Hl(z) =

bl(O) =+ bi(].)ZﬁI + ...+ bi(qi — 1)27qi+1
14+ ai(1)z=t +... +ai(p; — 1)z7pit!



wheret = 0,1,2...M —1. The system output in the z-domain
is given by,

Y (2) = H(2)5(2) ()
where
i e
MO I H(2) = ; 3)
YMfl(Z) HMfl(Z)

Also, S(z) is the common input to the different channels and
is a scalar polynomial. Now consider two of the channels in
(2). Using (1) we get,

Ai(2)Yi(2) = Bi(2)S(2)  A;(2)Y;(2) = Bj(2)5(2). (4)

Multiplying both sides of the it* channel equation by B;(z)

and both sides of the j** channel equation by B;(z), and
subtracting we get,

Bj(2)Ai(2)Yi(z) — Bi(2)4;(2)Yj(z) = 0. (5)

Note that the commutativity property of the convolution
operation has been used. Let

Cij(2) = Bj(2)Ai(2) (6)

where i,7 =0,1,...,M — 1 and i # j. From (5) we can see
that we can solve for all K = M (M — 1) combinations of
Ci;(z) in a straightforward way. However, the recovery of
Bj(z) and A;(z) from Cj;(z) is not possible, for example
when M = 2, as there is no possible way of distinguishing
between the poles and zeros in (5). But it can be shown that
the poles and zeros can be separated without any ambiguity
when there are 3 or more channels. We will discuss this
result further after we have couched the above equations in
matrix-vector notation.

2.2. Identifying the product B;(z)A;(z)

Let P and @ be the maximum values of the p}s and ¢}s
respectively. Hence, R = P+ () — 1 will be the maximum of
the orders of C;j(z). Consider N points of data recorded at
each system output. The solutions for a given pair Cj;(z)
and Cj;(z) are coupled as in (5) and the convolution version
in the time domain can be represented as a set of linear
equations as,

Cij
( =Y Yj; )( chi ) :O(N—R+1)><1 (7)
where c;; and c;; are R x 1 unknown vectors whose elements
are the coefficients of the polynomials Cj;(z) and Cj;i(z)
respectively. The (N — R+ 1) x 1 matrix Y; is given by,

yi(R=1) yi(R—-2) --- yi(0)
yi(R) yi(R—1) - yi(1)

yi(N=1) 5i(N-2) yi(N — R)

Note that the unknown vector in (7) should be constrained
to avoid trivial solutions. Also, for (7) to have a unique solu-
tion, the number of equations has to be at least equal to the
number of unknowns. Taking into account the contamina-
tion of the output observations by additive noise this system
of overdetermined equations leads naturally to a LS solu-
tion. The above condition can be expressed as N > (3R—1)
without taking into account the reduced dimensionality of
the problem due to the constraint set. For a given system
of M channels all combinations of (5) can be formulated
as K/2 sets of equations. These sets of equations provide
unique solutions for all Cs;(z) (i,7 =0,1,...., M —1;i # j).
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Figure 1. Special MIMO FIR model

2.3. Solving for A;(z) and B;(z)
Let a; and b; be the coefficient vectors of the polynomials
A;i(z) and Bj(z) respectively. Since c;; = a; ® b; (® repre-
sents the convolution operation) we have a special type of
the multichannel FIR BI problem. Figure 1 depicts the 3-
channel case '. The MP x 1 and MQ x 1 coefficient vectors
a and b of the multichannel system are given by concate-
nating the respective coefficient vectors together. Model
(a) treats the unknown coefficient vector a as an unknown
“input sequence” propagating through various “channels”
given by b. Model (b) reverses their roles. Due to the com-
mutativity of the convolution operation it may seem that
using either of the two models shown in Figure 1 would be
acceptable. However, this is not the case. The choice is
dictated by the values of M, P and ). Depending on their
values only one of the above models may provide a unique
solution at this first step. The BI problem depicted in Fig-
ure 1 is solved in two steps. Proceeding as per traditional
solutions to the multichannel FIR problem [5] the “input
sequence” is eliminated and a linear system of equations
in the unknown “channel sequence” is first obtained. The
answer to whether this system of equations is not underde-
termined, is intimately related to the values of M, P and
Q@. In fact, as will be shown later, picking the lower length
coefficient vector, a or b, as the “channel” sequence is a
sufficient (not always necessary!) requirement to obtain an
overdetermined system of equations.

First consider model (a) for the 3-channel case (K = 6).
It can be represented as,

Ba=c 9)
where tl%e
6R x 1 vector c = ( C31 Cls cC3n cCl3 cCa; Cla ) )

The matrix KR x M P matrix B for the 3-channel case is
given by,

0 0 B;

Bs O 0

o 0 0 B2
B = 0 Bs 0 (10)

0 B;:y O

B 0 0

where

B; = Taxp(bi,.). (11)

We consider the 3-channel case for simplicity. Tt is straight-
forward to extend the structure for larger number of channels



The operation Trw xcr(colv,rowv) produces a Toeplitz
matrix of size RW x CL whose first column and row are
given by the vectors colv and rowv respectively. If the re-
quired dimensions of the matrix are bigger than the dimen-
sions of the vector parameters then an appropriate number
of zeros are appended to the vectors. If the required di-
mensions of the matrix are smaller than the dimensions of
the vector parameters, then the first RW rows and first C'L
columns of the matrix are taken. Note that the first ele-
ments of colv and rowv should be the same. If either colv
or rowv is zero except for its first element that should be
equal to the first element of the other vector which is non-
zero we indicate it simply by a period.
Proceeding as in [5] we get,

Cb=0 (12)
where for the M = 3 case C is given by,
0 —Ci3 Ci2
C=| —Cg2s 0 Ca1 |. (13)
Cs2 —-Cs1 0
In the above equation Cj; is given by Tpxo(cij, .) as defined
in (11).
For the M = 4 case C is given by,
0 —Ci13  Ci2 0
0] —Cis 0 Ci2
0 0 —Ci1a Cis
—C24 0 0 CZI
_ 0 0 C2s  Cozs
C= —Cs32 Cs1 0 0 ) (14)
—Casaq 0 0 Cs1
0 Csa 0 Cs2
—C42 Cau 0 0
—Cays 0 Cau1 0
0 —C43 Ca2 0

Note that for a given M, the size of the C matrix is
M(M —1)(M —2)P/2 x MQ. Now for an overdetermined
system of equations we require M (M — 1)(M — 2)P/2 >
MQ@. This in turn implies that Q < (M — 1)(M — 2)P/2.
Once b is obtained from (12) (for this model, co-primeness
of the numerator polynomials is a sufficient condition to
ensure uniqueness of the solution up to a scalar multiple)
subject to constraints that preclude a trivial solution, a can
be obtained using (9).

Alternatively, if we had used the model shown in Fig-
ure 1(b) the size of the C matrix for a given M would be
M(M — 1)(M — 2)Q/2 x MP and the corresponding re-
quirement to obtain an overdetermined system of equations
would have been P < (M — 1)(M — 2)Q/2 (for this model,
co-primeness of the denominator polynomials is a sufficient
condition to ensure uniqueness of the solution up to a scalar
multiple). These inequalities give a criterion for choosing
between the two models shown in Figure 1 depending on the
number of channels. For example, when M = 3 we have,
Q@ < P for model (a) and P < @ for model(b). Hence, the
choice of the appropriate model will depend upon whether
the denominator order P is greater than the numerator or-
der @ or vice versa. Now if M = 4 then the condition for
using model (a) is given by @ < 3P and so on.

Also, note that from the structure of C for M = 2 we
can never obtain an overdetermined system of equations for
any value of P and Q. This makes it clear why the problem
cannot be solved for the 2-channel case without ambiguity.

Once the channel parameters have been found it is
straightforward to obtain the unknown source sequence.
Rewriting the system in matrix-vector notation as,

Ay =Bs (15)

where y = [yg ...ym_1]7, the M, N x 1 vectors y; being
the IV points of data observed at the output of the corre-
sponding channel and s is the unknown (N +Q — 1) x 1
source vector. The M N x (N + @ — 1) matrix B represents
the moving average (MA) operation of the transfer function
and is given by,

B.

s]]
I

(16)
Bm-1
where B; = Tanxn (bi, ) as defined in (11). Note that in the
fault monitoring application we are interested in, transient
signals are being monitored. Hence, the output can be as-
sumed to be zero for time instants outside the duration of
the transient. Therefore, if the observation window is the
duration of the transient, (15) is an exact representation
of the system without “end-effects” even though only a fi-
nite amount of data is available. The MN x M N matrix
A in (15) is a block diagonal matrix with N x N matrices
A; = Tnxn(ai, ) along the diagonal. From (15) the source
vector estimate is given by,

s =BfAy (17)

where ‘i’ denotes the pseudo-inverse of the matrix.

Summarizing the procedure we have,

Step I: Check if the number of collected data points per
channel N is more than the minimum required to provide
a unique solution for c.

Step II : Solve for all c;; using (7).

Step III : Choose an appropriate model (either (a) or (b)
shown in Figure 1) keeping in mind the conditions on P
and @ for a given value of M.

Step IV : Solve for a and b in the appropriate order.

Step V : Solve for the input sequence s using (17)

Note that no assumptions have been made on the charac-
teristics of the input sequence. The input vector is assumed
to be deterministic and can be a segment/realization of a
deterministic/stochastic signal.

3. SIMULATIONS

In all the following simulations we assume that a;(0) = 1
and that b;(0) is known for all the channels. This provides
a simple linear constraint ¢;;(0) = a;(0)b;(0) when solving
for c;; in (7).

As mentioned earlier one of the advantages of our ap-
proach is its applicability to non-white input cases. We will
first consider such a scenario with a 3-channel system with
parameters P = 3, () = 7 and N = 60. Since P < @), model
(b) is an obvious choice. Figure 2 shows the actual input
sequence and its magnitude spectrum (solid line) superim-
posed on the estimates obtained with our method (dashed
line) at an SNR of 30 dB. Note that the methods outlined
in [4] are not applicable in this case due to non-whiteness
of the input. Figure 3 shows the source estimate obtained
at an SNR of 60 dB for the above situation using the LP
method.

Our method can also be applied to communication sit-
uations without any modifications. Consider again a 3-
channel system with parameters P = 3, ) = 7 and N = 60.
The signal constellations after equalization at an SNR of
35dB using our method and the LP method are shown in
Figures 4 and 5 respectively (a superimposition of 15 real-
izations are shown). Note that our approach performs well
even with a short record of data. There was no symbol error
after equalization.

Above we have presented only input sequence estimates.
Channel parameter estimates are also provided by our tech-
nique as an intermediate step.
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Figure 2. Source Estimates for SNR=30 dB

. . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
normalized freq

Figure 3. Source Estimates for SNR=60 dB (LP

method)
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Figure 4. Signal Constellation after Equalization

(The paper’s method), N = 60
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(LP method), N =60

4. CONCLUSIONS

We have presented a novel approach to the blind identifica-
tion of SIMO PZ systems that does not impose restrictive
i.i.d. assumptions on the input sequence. We have derived
conditions for the identifiability of the multichannel system
in terms of the underlying channel model orders and the
data record length per channel. We have shown that at
least 3 channels are required to facilitate separation of the
poles and zeros of the system. Simulations highlighting the
performance of the technique have been presented.

[1]

REFERENCES

L. Tong, G. Xu and T. Kailath, “A new approach to
blind identification and equalization of multipath chan-
nels,” Proc. 25th Asilomar Conference on Signals, Sys-
tems and Computers, Pacific Grove, CA, November
1991.

H. Liu, G. Xu, L. Tong, T. Kailath, “Recent Develop-
ments in Blind Channel Equalization: From Cyclosta-
tionarity to Subspaces,” Signal Processing, vol. 50, pp.
83-99, 1996.

T. Kailath, Linear Systems, Prentice-Hall, 1980.

A. Gorokhov and P. Loubaton, “Multiple Input Multi-
ple Output ARMA Sytems : Second Order Blind Iden-
tification for Signal Extraction,” Proc. IEEE SSAP
Workshop, pp. 348-351, Corfu, Greece, 1996.

G. Xu, H. Liu, L. Tong and T. Kailath, “A Least-
Squares Approach to Blind Channel Identification,”
IEEE Trans. on Signal Processing, vol. 43, no. 12, De-
cember 1995.

C. Scruby, “An Introduction to Acoustic Emission,” J.
Phys. E. Sci. Instrum., 20:946-953, 1987.

G. T. Venkatesan, D. West, K. M. Buckley, A. H.
Tewfik, M. Kaveh, “Automatic Fault Monitoring using
Acoustic Emissions,” Proc. ICASSP, 1997, Atlanta.
G. T. Venkatesan, M. Kaveh, A. H.Tewfik, K. M.
Buckley, “Blind Identification of Single-Input Multiple-
Output Pole-Zero Systems,” to be submitted, IEEE
Transactions on Signal Processing.



