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ABSTRACT

In this paper, we describe an computationally efficient method of
generating more accurate sinusoidal parametersfamplitude, fre-
quency, phaseg from a wideband polyphonic audio source in a
multiresolution, non-aliased fashion. This significantly improves
upon previous work of sinusoidal modeling that assumes a single-
pitched monophonic source, such as speech or an individual mu-
sical instrument, while using approximately the same number of
sinusoids. In addition to a more general analysis, we can now per-
form high-quality modifications such as time-stretching and pitch-
shifting on polyphonic audio with ease.

1. INTRODUCTION

Sinusoidal modeling has been developed as flexible, parametric
method of representing speech [10] and musical instruments [8].
These methods assume that most speech and audio signals can be
well represented by many time-varying sinusoids.1 The problem
is to model the audio using time-varying sinusoids in an efficient
and perceptually meaningful manner.

We solve this problem of parameter estimation by first split-
ting the input signal into octave-spaced, oversampled, non-aliased
subbands. Then, we perform sinusoidal modeling individually on
each subband signal. Not only is this method efficient in the num-
ber of sinusoids needed to faithfully represent the signal, but it is
efficient in overall complexity and sounds much better than using
a single-subband sinusoidal model.

2. WINDOW LENGTH TRADE-OFFS

A challenging problem for polyphonic sinusoidal analysis is wisely
choosing the window length. Because of the near logarithmic scale
of pitch perception, we need very long windows in order to accu-
rately estimate the pitch of low frequency partials. The higher the
frequency of the partial, the less frequency resolution the analysis
needs. The tradeoff in improved frequency resolution is of course,
worse time resolution.

Over the period of a single analysis frame, the algorithm es-
timates the amplitude, frequency, and phase of any sinusoids it
believes to be present. The time resolution of these solutions is
only as fine as the window length, itself. Thus, we desire as short

1Later, it was shown that one can model the residual of sinusoidal mod-
eling as noise [14], or model the residual as transients+noise [7]. In this
paper, we will only concentrate on the problem of estimating sinusoids.

of a window as possible. The traditional method of synthesizing a
new onset partial in sinusoidal modeling is to ramp up the ampli-
tude from zero in the middle of the previous frameFi�1 toA0 in
the middle of the current frameFi. This is illustrated in Figure 1.
Thus, the shorter the window, the shorter the ramp-up duration; in
addition, the sinusoid onset will better localized in time.

This ramp-up effect is analogous to the pre-echo problem in
audio data compression. The onset of the synthesized sinusoid
occurs in the middle of the previous frame (before the original
sinusoid begins) just as the quantization noise in transform coding
occurs at the beginning of the current frame (before the onset of
the original waveform).
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Figure 1: The top figure is the original sinusoid. The middle figure
is the synthesized sinusoid, with the amplitude ramped from the
previous frame. The bottom figure is the error difference signal
between the original and the synthesized signal.

Previous works [13, 11] use a pitch-synchronous analysis to
determine the window length. As often as once a frame, a pitch
estimate is calculated. Then, the analysis window is adjusted ac-
cordingly; the lower the pitch, the longer the window. The window
is thus guaranteed to correctly estimate the fundamental frequency,
and all frequencies above it. This pitch-estimation does not solve
the pre-echo problem, but does assure that all partials above the
fundamental will be resolved. In fact, the lower the fundamental
pitch, the longer the window, and the worse the pre-echo problem.

This approach works reasonably well if the input signal can
be assumed to be monophonic and single-pitched. For polyphonic
audio, it is impractical to attempt to discern multiple pitches. To



solve this problem, we split the input signal into several bandlim-
ited frequency ranges, and then design a window length for each
channel individually.

3. MULTIRESOLUTION FILTERBANK

There have been several different previous approaches to solving
the sinusoidal parameter estimation problem in a multiresolution
manner. One method is to input a signal through a octave-spaced,
critically sampled, wavelet filter bank [6, 1, 12], and perform si-
nusoidal modeling on the channels. This results in relatively low
complexity, but there is no known way to eliminate all aliasing
between channels in the filter bank. Therefore, each channel esti-
mates sinusoidal parameters of the actual bandpassed-octave sig-
nal, in addition to parameters of the aliased octaves adjacent in
frequency. It is possible to reduce these cross-talk aliasing terms
[1, 4, 15], but complexity is now raised, and the results have not
been sufficient for high quality, wideband sinusoidal modeling.
For other alternative methods, refer to the discussion in [9].

In this paper, we use an octave-spaced, complementary fil-
ter bank [5] as the front end to a bank of sinusoidal modeling
algorithms. Each channel output goes into a separate sinusoidal
modeling block, with its own window and analysis parameters,
as seen in Figure 2. Notice that there is no synthesis filter bank.
ThefA; !; �g parameters are extracted from the several sinusoidal
modeling blocks, and then are fed into a sinusoidal synthesizer.

We thus avoid the two main problems of previous schemes:
with the filter bank discussed in the next section, we avoid the
aliasing cross-talk problem as seen in wavelet filter bank front-
ends. By introducing downsampling into the filter bank, we avoid
the high costs of storage, memory, and complexity as seen in the
constant-Q non-decimated filter banks, or the multiple FFT schemes.
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Figure 2: The input gets split into highpass and lowpass signals
three times by theCFB blocks, or the complementary filter banks,
as shown in Figure 3. The four octaves of output signals each get
fed into thesin-modblocks, or the sinusoidal modeling blocks. It
is here that the sinusoidal parametersfAi
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for thekth partial of theith octave. Thesinusoidal synthesizercan
be implemented either as a bank of oscillators or using IFFTs.

4. ALIAS-FREE SUBBANDS

The filter bank is also designed to assure that the subband sig-
nals are alias-free. There is overlap in frequency ranges between
the channels, but no frequencies get folded over due to the sub-
sampling. This filter bank structure is based upon the Laplacian
pyramid structure [3] from the multiresolution image compression
world. The enhancement made to the Laplacian structure is the

intermediate filterHb [5], as seen in Figure 3. The filterHb elimi-
nates the spectral copy shifted to! = � after the lowpass filterHd

and downsampling, IfHd were an ideal lowpass (brickwall) filter,
then there would be no overlapping spectral copy; but this is not
the case in practice2.

2

2

Hi

HbHd

z−D

X

Xhigh

Xlow

Figure 3: The two channel, complementary filter bank.Hd andHi

are the decimation and interpolation filters, respectively. Each are
designed as FIR lowpass filters, with a cutoff frequency near�=2.

It is important to guarantee no aliasing in the subbands; if there
were aliasing, the sinusoidal modeling blocks may generate pa-
rameters due to the aliased sinusoids in addition to the actual sinu-
soids. Since there is no synthesis filter bank, we cannot rely upon
aliasing cancellation in synthesis. The sinusoidal synthesizer gen-
erates sinusoids from either a bank of oscillators, or from a block
IFFT.

For this benefit of alias-free subbands, the filter bank can no
longer critically sampled; but rather, it is oversampled by a factor
of two. This factor of two is independent upon the number of
octaves in the system. This is contrast to the methods of [1, 6],
whose complexity and data rate grew linearly as a function of the
number of octaves.

To examine the subband signals to be approximated, examine
figure 5 for the magnitude spectrum of the four output channels of
the octave-based complementary filter bank. Figure 4 shows the
magnitude spectrum of the original saxophone note. Notice that
the lower plots in Figure 5 have their harmonic partials stretched
further and further. This is due to the progressive downsampling
present in each channel.

Notice also that there is no audible aliasing between channels.
There are some partials that exist in both channels (for example, a
partial at1150Hz occurs in both of the lowest two channels). But,
when synthesized with the correct phase, the two partials construc-
tively sum to the single, original partial. Also notice the frequency
regions of nearly zero energy in the plots of Figure 5. This is also
due to the fact that the filter bank is two times oversampled. Thus,
there is almost half of the bandwidth with zero energy. If the filter
bank were critically sampled, then the plots would have no ’dead-
zones’, or frequency regions lacking energy. But, the energy would
be partially aliased.

5. MULTIRESOLUTION WINDOWING

Now that we have introduced the multiresolution scheme, as pic-
tured in Figure 2, we will examine the time-frequency tiling of this
approach, along with its pre-echo characteristics.

2The operators in figure 3 could be commuted into one lowpass filter,
and a single downsampler for a lower complexity filterbank.
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Figure 4: The magnitude spectrum of the original saxophone note,
sampled at 22 kHz.
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Figure 5: The magnitude spectra of the four channels of the filter
bank, with the input shown in Figure 4. The top plot is the highest
frequency octave band (not downsampled) and the bottom plot is
the lowest frequency octave (downsampled by 8).

Each of thesin-moddiagrams in Figure 2 first windows its
incoming data. All of the windows are of the same length in each
of thesin-modblocks. But, the data rate in each of the octaves is
different. If the original data rate isfs, then the data rate in the
top octave isfs, the data rate in the octave directly below isfs=2,
thenfs=4, and the data rate in the lowest octave isfs=8. So, the
data rates are different and the window lengths stay the same. But,
one can also interpret this in the following way: the effective data
rates are the same, and the effective window lengths are different.
In this manner, the highest octave window would be of lengthL
samples, the window in the octave below would be of an effective
length of2L, then4L, and finally the lowest octave would have a
window length of8L.

This effect can be seen in Figure 6. Consider the top octave,
initially. Its effective window length isL, and is updated every
L points3 . Once the windowing has taken place, we estimate
the sinusoidal parameters, using approximate maximum likelihood
estimate techniques based on [7] from sinusoidal modeling, and
originally developed by [16]. We then hop another window length
(again, 1:1 hop size only for simplicity of discussion), and repeat
the parameter estimation. Once a sufficient number of parameters
from adjacent windows are recorded, we then begin the process of
sinusoidal peak continuation, as developed by [14].

This windowing and parameter estimation is also performed
for the other three lower octaves. But, the parameter update rate
is halved for every octave lower than the top one. For example,
in the second highest octave, sinusoidal parameters are computed

3In practice, we use an overlap of 2:1 or 4:1 for windowing. In Figure 6
and in this discussion, we discuss an overlap of 1:1 for clarity.
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Figure 6: The tiling of the time-frequency plane.

at timesf2L; 4L; 6L; 8L; :::g, while the parameters at the lowest
octave are computed at timesf8L; 16L; 24L; :::; g. Therefore, the
higher the octave, the denser the time sampling of sinusoidal pa-
rameters.

6. MULTIRESOLUTION PRE-ECHO

With the new system implemented, we have now limited the extent
of pre-echo by frequency region. Because the effective window
length is shorter at the higher octaves, the pre-echo is correspond-
ingly limited to the length of this shorter window. At the lowest
octave, we still need long effective windows for proper frequency
resolution, and there still will be some amount of audible pre-echo.

After extensive listening tests, it seems that what matters in
pre-echo is not how many milliseconds of pre-echo is present, but
rather how manyperiodsof a signal exists as pre-echo at each
partial frequency. Therefore, at high frequencies, there may be 1-3
milliseconds of pre-echo, but several periods are still contained.
At low frequencies, there may be 10-20 milliseconds of pre-echo,
but the amount of periods in this regions is relatively similar to that
of the high frequencies.

7. RESIDUAL MODELING

The multiresolution sinusoidal modeling approach stated in this
paper is actually the first of a multi-step process to handle com-
plex audio signals. Once all the valid sinusoids are found, they
can be synthesized, subtracted from the original (delayed) signal,
and then produce a residual. This residual, which is composed of
mostly transients and noise, is then processed through our transient
modeling synthesis [TMS] [17] algorithm. The TMS algorithm
can parametrically model transients with very fine time resolution.

The residual from the transient modeling synthesis can then
be modeled by using a frame-based, time-varying filtered noise
algorithm with some sort of excitation, in the same manner as
speech compression algorithms. Alternatively, a psychoacoustic,
transform-based algorithm [2] could efficiently allocate bits to the
signal energy of this second residual not masked by the sinusdoidal
modeled synthesis or the transient modeled synthesis.



8. MODIFICATIONS

As shown by [14], it is relatively straightforward to to time-scale
and pitch-scale modify audio when it is represented in tracks of
sinusoids. Both time-scale and pitch-scale modifications can be
made independently.

The ratio of synthesis window length to analysis window length
in each octave-spaced channel is equal to the time-scaling factor.
The amplitude, frequency, and phase parameters in their respec-
tive sinusoidal tracks are now simply interpolated over a different
hop-size length. To pitch-scale modify audio, the frequency pa-
rameters are all scaled accordingly (and eliminated if scaled above
fs=2). Future versions could include alogorithms for preserving
the spectral magnitude envelope; while this is necessary for speech
and some musical instruments, it is not clear if this is useful for
polyphonic audio.

9. RESULTS

After listening to many genres of22kHz-sampled music tested
with both one band and four bands of sinusoidal modeling, it seems
that drums gave one band sinusoidal modeling the most problems.
Any cymbal or snare hits generate short-time, broadband energy
that can not be well represented by one-band,40ms: windowed
sinusoids. This results in a distorted sound, that blurs or elimi-
nates any sharp attacks. In this current multiresolution representa-
tion, the shortest windows are about5ms: long in the top octave
(5 � 11 kHz), which seems about short enough for most attacks.
These results are not perceptually lossless by using sinusoids only,
but are much better than using one band.

In addition, the residual is now better time-localized and has
less pre-echo errors in the higher octaves. Therefore, the error
signal will be better represented by the residual models described
in the section 7.

Not only does the four-band system sound better than single-
band sinusoidal modeling, but the number of sinusoids estimated
per frame at any given time is approximately the same between
systems. For reasonable quality, the system extracts anywhere be-
tween60� 80 sinusoids for the single band system, and10� 20

sinusoids per octave-band channel in the four-band system.

10. CONCLUSIONS

We have proposed a new multiresolution sinusoidal parameter esti-
mation algorithm that has the computational efficiency of wavelet
filter bank front-ends, but without any of their aliasing problems.
In return, we have twice as much intermediate subband data as
with a critically-sampled wavelet filter bank. But more impor-
tantly, there is no increase in the resulting number of sinusoidal
parameters due to the oversampling of the subband data.

With this structure in place, it is now reasonable to perform si-
nusoidal modeling on polyphonic, wideband audio without having
to tweak many parameters or attempt a pitch-esimation in parallel.
All modifications previously performed on monophonic sources,
such as time-streching and pitch-shifting, can now be easily ex-
tended more generally to wideband audio.
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