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ABSTRACT signal without sacrificing information on its localization in time
and to facilitate signal processing locally in both time and fre-
quency. Hence, it is crucial to deal with windows which are well
localized in both time and frequency. It is also important that

is complete in the considered spaéé(R) or ¢*(Z)) and exhibit
certain stability properties, in the sense that a small perturbation in
the expansion coefficients gfcannot result in a signal which is ar-
bitrarily far from f; similarly for the inner products representation.

A family of vectors in a space which satisfies these completeness
and stability requirements is said to b&ame[6, 5]. For its many

fine features, the preferable class of frames are orthonormal bases.

if not infeasible. We propose a new filter design method based OnHowever, it turns out that the requirements for linear independence

. ) ) on vectors in a frame, and good localization of the windoware
expansions with respect to prolate spheroidal sequences. The a i conflict
vantages of this new method are more and more pronouncedas the' ™=\ " Lo B ow theorem [2, 8] asserts

redundan(_:y of the frame increases._ These advan_tages per‘[ai_n o fhat if v is a window of an orthonormal Weyl-Heisenberg basis in
reduction in computational complexity and the ability to describe ?(R) then it has slow decay (i.e. poor localization) in either time

good and long windows with a few parameters. or frequency. An effect if*(Z) similar to that described by the
Balian-Low theorem has been observed in [11], where it is shown
1. INTRODUCTION that there are no critically sampled modulated filter banks with fi-
) ) o nite impulse responses that have good frequency selectivity. This
Short-time Fourier analysis, as originally proposed by Gabor [7], \as the motivation for research in the direction of redundant Weyl-
amounts to expanding signals with respect to a Weyl-Heisenbergyeisenberg frames. It was demonstrated by Daubechies that as
family of vectors soon as some redundancy is introduced the situation changes dras-
tically, that is redundant Weyl-Heisenberg frame<i{R) allow
for windows with good localization in both time and frequency [5].
It was also shown that i#’(Z), Weyl-Heisenberg families based
on windows with good frequency selectivity are attainable when
gedundancy is allowed [4]. Even before these results on the lim-
itations of Weyl-Heisenberg bases were established, it had been
known in the signal processing community that redundant short-
time Fourier representations are advantageous over critically sam-
o . _ _ J&Zin 1 pled ones in terms of providing robustness, which is important in
®ovs = v vi[n] = vln = mN]e" K hiez e mez, 2) applications involving some processing in the Fourier domain [1].
A particularly interesting class of redundant Weyl-Heisenberg
frames are those which are tight. A convenience of of dealing with
tight frames is that signals can be expanded in a manner remi-
F(l,m) = (f, vim), vim € @0 x5 niscent of orthonormal expansions. NamelyPif v,k is a tight
frame inell?(Z) than anyf in the space can be represented as
is referred to as the short-time Fourier transform and it can be im- N
plemented using modulated filter banks. The goal of signal analy- f== Z(f, Virn Y Vim.
sis using either expansions K

Weyl-Heisenberg frames are the tool for short-time Fourier anal-
ysis. These are generated from a prototype window function us-
ing translation on a rectangular grid in the tiftlequency plane.
Particularly appealing Weyl-Heisenberg frames are those which
are tight as they allow for signal representations analogous to or-
thonormal expansions and have good numericalilgtaproper-

ties. Designing the window of a tight Weyl-Heisenberg frame re-
quires optimization of the frequency characteristics of the window,
usually some form of frequency selectivity, under a set of nonlin-
ear constraints. For long windows this can be a formidable task,

Dy 20,00 = {Vim : Vim(%) = v(z — 130)e’ ™" 1cz mez, (1)

that are generated by translating a single prototype window func-
tion in time and frequency. In digital signal processing, one often
encounters representations which are obtained as inner product
(f, vim) Of @ signalf € ¢*(Z) with the vectors of a discrete-time
Weyl-Heisenberg family

rather than expansions with respectp », . The transform that
mapsf € ¢*(Z) to the collection of inner products

Im

fe Z o~ 3) The requirement thab., i is a tight frame imposes a number
e of nonlinear constraints on the windaw Designing the window
bm v then requires optimization of its characteristics (time-frequency
with respect to Weyl-Heisenberg families or the innardarct rep- localization) under these constraints. In this paper we propose a

resentations is to extract information on the spectral content of theProcedure which facilitates this design even for very long filters
by taking advantage of redundancy. The procedure also gives long

17z here denotesthe s€0,1, ..., K }. filters which can be specified with a few parameters.




2. WINDOW DESIGN FOR TIGHT WEYL-HEISENBERG
FRAMES: PROBLEM FORMULATION

A family of vectors,{¢, } ;e in a Hilbert space is said to be a tight
frame if for anyf in the space_ ;| < f,¢; > 1> = A|lfI,

for some constant > 0. If {¢; },es is atight frame, any in the
space can be represented as

=3 e

J€J

4)

A tight frame with the frame constant = 1 is an orthonormal

the energy function is a very complex trigonometric function of
Given's rotation angles.

Here we propose a design method which amounts to solv-
ing a system of. N/ K quadratic equations i N/ K unknowns
that fully describe designed windows. The proposed approach has
clear advantages in cases with relatively high redundancy factors,
K/N, in the sense that the numerical complexity of the design
algorithm is significantly reduced and that resulting windows can
be concisely described with only a few parameters. For example,
in the extreme caséy = 1, of frames®, 1 256 with windows of
lengthZ = 1024, the constrained optimization procedure requires
optimization in the space d24 filter taps unde# quadratic con-

basis (we assume that the frame vectors are normalized to unitStraints, the parametric approach requires unconstrained optimiza-

norm). In general, for redundant frames the frame constaist

tion of the energy function over the spacel620 rotation angles,

greater tharl, and it represents redundancy of the frame. For a Whereas the method proposed in the next section amounts to solv-

tight Weyl-Heisenberg frame®, ~ x, its redundancy is equal to
the ratio /N .

A Weyl-Heisenberg family®., ~ x, forms a tight frame in
£%(Z) if and only if the window satisfies the following constraints
[9. 3]

Zv[n—i—jN]v[n—l—jN—i—iK] = %5[1'], n=0,1,.,N-1. (5)
JEZ

The issue in designing a window for short-time Fourier analysis is
to attain a high concentration of its energy around the origin in the
time-frequency plane. In many engineering applications energy

ing a system o quadratic equations ihunknowns. Furthermore
describing the designed windows requit@24, 1020 or 4 param-
eters, respectively.

3. NEW DESIGN PROCEDURE

The idea behind the proposed method is to represent the window
as the linear combination of eigenvectprf the matrixS 1,

L—-1
v = E agp;.
1=0

@)

leakage of a filter out of a prescribed frequency band is a more rel- Eigen structures of matrice% r 1, were studied by Slepian [10].

evant design criterion than is a time-bandwidth product. Accord-

ingly, design of the window will be here directed towards max-
imizing its energy in thgo, %] frequency band, given its length.
For afilterv of length L, its energy in the banf, 7] is given by

b= VTS(K,L)Va

(6)
wherev is the column vector

v = [v(0)o(1)...0(L — 1)]"
andS g 1y is thel x L matrix

o lsin(a(i -J))
[S(I\",L)]z,] = 7(1 !
with « = 7/ K. So the design amounts to maximizing the energy

function given by the quadratic form in (6) under constraints given
in (5).

A straightforward approach would be to use a constrained

The eigenvectorgo, p1, ..., pr—1 are obtained by truncating in
time certainprolate spheroidal sequendé6]. They form an or-
thonormal basis oR.”, so any window of lengtl, can be repre-
sented as their linear combination. Corresponding eigenvalues are
distinct, real and positive and we order them so that

Ao > A1 >...>Ap—1 > 0.

The windows that we are interested in are those which are well
concentratedin low frequencies, and these are basically linear com-
binations of eigenvectors; which are themselves well concen-
trated. A measure of the concentratiorppfin frequency is given
by the corresponding eigenvalue. Namely the total energy of
the[0, %] frequency band is equal fa (note that the eigenvectors
are normalized to unit norm). It turns out that K~ eigenvectors
of 8¢k, 1y have most of their energy in tiie, %] band[10], i.e. the
first L/ K eigenvalues are greater théus andZ/ K — 1 of them
are close tal. The rest of the eigenvalues;, decrease rapidly
towards zero asincreases beyonl/ K.

The design requires solving for a set of expansion coeffi-

optimization procedure. This requires maximization of the quadraticientsa; in (7) so that the tight frame constraints in (5) are sat-

form of L variables undef, N/ K quadratic constraints. Specifi-
cation of the designed windows requires identifying/atvindow
taps.

Alternatively, if closed form solutions for the constraints in

isfied. As there ard.N/K constraints, the window has to be
represented as a linear combination of at Ida&t/ K eigenvec-
tors p;, and we takeo, p1, ..., o v/ —1 Since they have the best
localization in low frequencies. The design constraints translate

(5) are known, an unconstrained optimization procedure can beinto the foIIow_in_g system of. N/ K quadratic equations in the ex-
used. A complete set of solutions of the tight frame constraints pansion coefficients,

can be given through a parameterization of paraunitary matrices,
based for instance on Given's rotations [4, 3]. In order to be able
to express the numerical complexity of the parametric approach

concisely, assume thaf is a multiple of N. In that case, window

KL/N=-1

2.

l,m=0

A g, = %6[1@], 0<i<N,0<k< L (8)

Ka

design requires unconstrained optimization of the energy function where

over the space of. — L N/K rotation angles, and as many pa-

rameters are needed to specify the obtained windows. Note, that

b= puli+jNlpmli + N + kK.

J



The design procedure then requires finding solutions of this sys-%%
tem corresponding to windows that give high values of the opti-
mization criterion in (6). This is particularly easy whé@v/ K is

small, since the system, up to sign factor, has at reidst/ *)—* 02} |
different solutions. For systems of higher orders, good solutions
are usually obtained if iterative procedures for solving this system
are started with the initial valuegy§ o ... aLK_{V_l], which have

all of their “energy” concentrated in coefficients with low indices.
A nice property of vectorg; is that even indexed vectors 086 ]

are symmetric. So ib is required to be symmetric then it can

be represented as the linear combination of the firS{/ K" even

indexed vectorsgo, p2, ..., po( LN/ K)—2- o082 i
In order order to the satisfy design constraints wie¥y K

is considerably larger thah/ K, v needs to be represented using  osr ]

many vectorg; which have0.00% energy in the band, and that

can have a bad impact on its frequency localization. However, as®™ 2 3 s 5 6 7

the set of windows which are well localized in frequency is prac-

tically spanned by the first /K eigenvectors, all good windows  Figure 1: Concentration of windows of tight framds, ; 5 in the

are close to the linear span of these vectors. Therefore, there argrequency bando, =/ K], for filters of lengthl = nK, n =

always solutions where coefficients corresponding to the eigenvec-1,2, ..., 7. Top curve - windows obtained from the constrained

tors with high indices have insignificantvalues, and these solutions optimization procedure. Bottom curve - windows obtained using

give good windows. the design method based on prolate spheroidal sequences.
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4. DESIGN EXAMPLES . . .
with low complexity, but also leaves space for improvements based

The price paid by this new design procedure is that it does not at-ON the trade off between complexity and quality of design.
tain the global maximum of the design criterion. However, this
loss in energy concentration of the window at low frequencies
is not significant. In Figure 1, for comparison we plot curves
which represent the amount of energy of tight frame windows in |
the frequency banf, =/ K7 for window lengthsl = nK, n =
1,2,...,7, when the subsampling factéf = 1, i.e. the most re-
dundant case for a giveli. The upper curve corresponds to win- ~ -20
dows with the highest energy content in the band, obtained using
the constrained optimization procedure. The lower curve repre-
sents windows obtained using the new method, and we can see¢
that the difference is insignificant. As the subsampling fadéfor
increases, the difference stays within few percent. These curves dc _g
not depend ori (inverse of the frequency resolution &f, v x)
but only on the ratioL N/ K. So, the curve for the constrained
optimization procedure is obtained far = 16, since complexity -80
of this procedure increases wifki and it becomes hardly imple-
mentable for large values df. 100 ‘ ‘ ‘ ‘ ‘
The new design procedure has pertained so far to windows =~ © 50 100 150 200 250 300
which are represented using minimal numbiel/ K, of expan-
sion vectors needed to satisfy design constraints. Design result$igure 2: Magnitude responses (log-plots) of windows for frames
can be improved if additional vectors are allowed, and windows ®.,1,x of lengthL = 6K. The window with sharper cut-off is
are optimized in the space &fN/K + k expansion vectorg;. obtained with the constrained optimization procedure, whereas the
Since vectors the; form an orthonormal basis fdR”, in this window with higher attenuation in the stop band is obtained using
manner we can approach the optimal windows arbitrarily closely. the new design method.
For example, for the cask, 1 256, the best localized window of

20

length1024, represented with (minimal number) expansion vec- Filters obtained from the new design procedure, with the
tors has92.56% of its energy in thg0, =/ K] band. With6 ex- minimal number of parameters, usually have larger bandwidth than
pansion vectors we attain a window with.15% of its energy in filters obtained with the direct constrained optimization, however
the band. Note that specifying these two windows requirasd they often have higher attenuation in the stop-band. This is illus-
6 coefficients respectively, while for windows obtained from the trated in Figure 2, for symmetric filters for frames 1, x of length
constrained optimization, specification required ali4 filter taps. L =6K.

The best filters for frame$., 1 x of lengthL = 4K obtained us- In Figure 3 we show the time domain plot of a symmetric
ing the constrained optimization procedure haget9% of their window for a tight frame®,, ¢4,256. The length of this window
energy in the band (this is the result obtained k= 8, 16, 32). is L = 512 (L = 2K). This window has poor frequency local-

So, the new procedure gives slightly suboptimal design resultsization, i.e. only83.31% of its energy is in thd0, = /256] band.



Note that this is because for better localization longer filters are
needed, and that using the constrained optimization procedure for
symmetric filters of lengttl = 2K for frames®. 1 x, we were

not able to find filters with more tha#3.64% of energy in the
band. The reason we show this filter is to give an example of the
design when the number of expansion vectors needed to satisfy
the design constraints is significantly smaller than the number of
constraints. In this case, the total number of design constraints is
128, and the shown filter is represented using only firsectors

p: While satisfying the constraints with accuracy of orgier'2.
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Figure 3: A window of length512 for a tight frame®, ¢4 256.
The total number of constraints in this casé1s, and this win-
dow satisfies them accurately while being represented with@nly

expansion coefficients.

The magnitude response of a window for a tight frabng s 256
is plotted in Figure 4. The filter length i5 = 1024. The tight
frame constraints are satisfied with precisié®. For compar-

ison, on the same graph we plot the magnitude response of the

rectangular window of lengtlh = 256, which is the only finite
length window which make&., »:¢ 256 an orthonormal basis [3].

This demonstrates the advantages of introducing redundancy in[6]

both allowing for windows with better frequency selectivity and
for facilitating design of long filters using thegposed algorithm.

5. CONCLUSION

In this paper, we proposed a method for designing windows for
discrete-time Weyl-Heisenberg frames. This method has general
applicability to the design of low-pass filtewsder nonlinear con-
straints. It is particularly appealing when the total number of con-
straints is not large, as in that case it allows for computationally in-

expensive designs of long filters and specifications of the designed

filters with only a few parameters.
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Figure 4: Magnitude response (log plot) ofl@824 long filter for

a tight frame®,, 16,256 . FOr comparison, the magnitude response
of the only FIR window giving an orthonormal badis »s¢ 256 IS
also plotted (the less selective filter).
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