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ABSTRACT

Weyl-Heisenberg frames are the tool for short-time Fourier anal-
ysis. These are generated from a prototype window function us-
ing translation on a rectangular grid in the time-frequency plane.
Particularly appealing Weyl-Heisenberg frames are those which
are tight as they allow for signal representations analogous to or-
thonormal expansions and have good numerical stability proper-
ties. Designing the window of a tight Weyl-Heisenberg frame re-
quires optimization of the frequency characteristics of the window,
usually some form of frequency selectivity, under a set of nonlin-
ear constraints. For long windows this can be a formidable task,
if not infeasible. We propose a new filter design method based on
expansions with respect to prolate spheroidal sequences. The ad-
vantages of this new method are more and more pronounced as the
redundancy of the frame increases. These advantages pertain to a
reduction in computational complexity and the ability to describe
good and long windows with a few parameters.

1. INTRODUCTION

Short-time Fourier analysis, as originally proposed by Gabor [7],
amounts to expanding signals with respect to a Weyl-Heisenberg
family of vectors

�v;x0 ;!0 = fvlm : vlm(x) = v(x� lx0)e
jm!0xgl2Z;m2Z; (1)

that are generated by translating a single prototype window func-
tion in time and frequency. In digital signal processing, one often
encounters representations which are obtained as inner products
hf; vlmi of a signalf 2 `2(Z) with the vectors of a discrete-time
Weyl-Heisenberg family

�v;N;K = fvlm : vlm[n] = v[n�mN ]ej
2�

K
lngl2ZK ;m2Z;

1

(2)
rather than expansions with respect to�v;N;K . The transform that
mapsf 2 `2(Z) to the collection of inner products

F (l;m) = hf; vlmi; vlm 2 �v;N;K

is referred to as the short-time Fourier transform and it can be im-
plemented using modulated filter banks. The goal of signal analy-
sis using either expansions

f =
X

l;m

almvlm; (3)

with respect to Weyl-Heisenberg families or the inner product rep-
resentations is to extract information on the spectral content of the

1ZK here denotes the setf0;1; :::;Kg.

signal without sacrificing information on its localization in time
and to facilitate signal processing locally in both time and fre-
quency. Hence, it is crucial to deal with windows which are well
localized in both time and frequency. It is also important that�v

is complete in the considered space (L2(R) or `2(Z)) and exhibit
certain stability properties, in the sense that a small perturbation in
the expansion coefficients off cannot result in a signal which is ar-
bitrarily far fromf ; similarly for the inner products representation.
A family of vectors in a space which satisfies these completeness
and stability requirements is said to be aframe[6, 5]. For its many
fine features, the preferable class of frames are orthonormal bases.
However, it turns out that the requirements for linear independence
of vectors in a frame�v and good localization of the windowv are
in conflict.

A result known as the Balian-Low theorem [2, 8] asserts
that if v is a window of an orthonormal Weyl-Heisenberg basis in
L2(R) then it has slow decay (i.e. poor localization) in either time
or frequency. An effect iǹ2(Z) similar to that described by the
Balian-Low theorem has been observed in [11], where it is shown
that there are no critically sampled modulated filter banks with fi-
nite impulse responses that have good frequency selectivity. This
was the motivation for research in the direction of redundant Weyl-
Heisenberg frames. It was demonstrated by Daubechies that as
soon as some redundancy is introduced the situation changes dras-
tically, that is redundant Weyl-Heisenberg frames inL2(R) allow
for windows with good localization in both time and frequency [5].
It was also shown that iǹ2(Z), Weyl-Heisenberg families based
on windows with good frequency selectivity are attainable when
redundancy is allowed [4]. Even before these results on the lim-
itations of Weyl-Heisenberg bases were established, it had been
known in the signal processing community that redundant short-
time Fourier representations are advantageous over critically sam-
pled ones in terms of providing robustness, which is important in
applications involving some processing in the Fourier domain [1].

A particularly interesting class of redundantWeyl-Heisenberg
frames are those which are tight. A convenience of of dealing with
tight frames is that signals can be expanded in a manner remi-
niscent of orthonormal expansions. Namely, if�v;N;K is a tight
frame inell2(Z) than anyf in the space can be represented as

f =
N

K

X

l;m

hf; vlmivlm:

The requirement that�v;N;K is a tight frame imposes a number
of nonlinear constraints on the windowv. Designing the window
v then requires optimization of its characteristics (time-frequency
localization) under these constraints. In this paper we propose a
procedure which facilitates this design even for very long filters
by taking advantage of redundancy. The procedure also gives long
filters which can be specified with a few parameters.



2. WINDOW DESIGN FOR TIGHT WEYL-HEISENBERG
FRAMES: PROBLEM FORMULATION

A family of vectors,f'jgj2J in a Hilbert space is said to be a tight
frame if for anyf in the space

P
j2J

j < f;'j > j2 = Akfk2;

for some constantA > 0. If f'jgj2J is a tight frame, anyf in the
space can be represented as

f =
1

A

X

j2J

hf;'ji'j: (4)

A tight frame with the frame constantA = 1 is an orthonormal
basis (we assume that the frame vectors are normalized to unit
norm). In general, for redundant frames the frame constantA is
greater than1, and it represents redundancy of the frame. For a
tight Weyl-Heisenberg frame,�v;N;K, its redundancy is equal to
the ratioK=N .

A Weyl-Heisenberg family,�v;N;K , forms a tight frame in
`2(Z) if and only if the window satisfies the following constraints
[9, 3]

X

j2Z

v[n+jN ]v[n+jN+iK] =
1

N
�[i]; n = 0; 1; :::;N�1: (5)

The issue in designing a window for short-time Fourier analysis is
to attain a high concentration of its energy around the origin in the
time-frequency plane. In many engineering applications energy
leakage of a filter out of a prescribed frequency band is a more rel-
evant design criterion than is a time-bandwidth product. Accord-
ingly, design of the windowv will be here directed towards max-
imizing its energy in the[0; �K ] frequency band, given its length.
For a filterv of lengthL, its energy in the band[0; �

K
] is given by

E = v
T
S(K;L)v; (6)

wherev is the column vector

v = [v(0)v(1):::v(L� 1)]T

andS(K;L) is theL� L matrix

[S(K;L)]i;j =
1

�

sin(�(i� j))

(i � j)

with � = �=K. So the design amounts to maximizing the energy
function given by the quadratic form in (6) under constraints given
in (5).

A straightforward approach would be to use a constrained
optimization procedure. This requires maximization of the quadratic
form of L variables underLN=K quadratic constraints. Specifi-
cation of the designed windows requires identifying allL window
taps.

Alternatively, if closed form solutions for the constraints in
(5) are known, an unconstrained optimization procedure can be
used. A complete set of solutions of the tight frame constraints
can be given through a parameterization of paraunitary matrices,
based for instance on Given's rotations [4, 3]. In order to be able
to express the numerical complexity of the parametric approach
concisely, assume thatK is a multiple ofN . In that case, window
design requires unconstrained optimization of the energy function
over the space ofL � LN=K rotation angles, and as many pa-
rameters are needed to specify the obtained windows. Note, that

the energy function is a very complex trigonometric function of
Given's rotation angles.

Here we propose a design method which amounts to solv-
ing a system ofLN=K quadratic equations inLN=K unknowns
that fully describe designed windows. The proposed approach has
clear advantages in cases with relatively high redundancy factors,
K=N , in the sense that the numerical complexity of the design
algorithm is significantly reduced and that resulting windows can
be concisely described with only a few parameters. For example,
in the extreme case,N = 1, of frames�v;1;256 with windows of
lengthL = 1024, the constrained optimization procedure requires
optimization in the space of1024 filter taps under4 quadratic con-
straints, the parametric approach requires unconstrained optimiza-
tion of the energy function over the space of1020 rotation angles,
whereas the method proposed in the next section amounts to solv-
ing a system of4 quadratic equations in4 unknowns. Furthermore
describing the designed windows requires1024, 1020 or 4 param-
eters, respectively.

3. NEW DESIGN PROCEDURE

The idea behind the proposed method is to represent the windowv
as the linear combination of eigenvectors�i of the matrixS(K;L),

v =

L�1X

i=0

�i�i: (7)

Eigen structures of matricesS(K;L) were studied by Slepian [10].
The eigenvectors�0; �1; :::; �L�1 are obtained by truncating in
time certainprolate spheroidal sequences[10]. They form an or-
thonormal basis ofRL, so any window of lengthL can be repre-
sented as their linear combination. Corresponding eigenvalues are
distinct, real and positive and we order them so that

�0 > �1 > ::: > �L�1 > 0:

The windows that we are interested in are those which are well
concentrated in low frequencies, and these are basically linear com-
binations of eigenvectors�i which are themselves well concen-
trated. A measure of the concentration of�i in frequency is given
by the corresponding eigenvalue. Namely the total energy of�i in
the[0; �

K
] frequency band is equal to�i (note that the eigenvectors

are normalized to unit norm). It turns out thatL=K eigenvectors
ofS(K;L) have most of their energy in the[0; �

K
] band [10], i.e. the

firstL=K eigenvalues are greater than0:5 andL=K � 1 of them
are close to1. The rest of the eigenvalues,�i, decrease rapidly
towards zero asi increases beyondL=K.

The design requires solving for a set of expansion coeffi-
cients�i in (7) so that the tight frame constraints in (5) are sat-
isfied. As there areLN=K constraints, the windowv has to be
represented as a linear combination of at leastLN=K eigenvec-
tors�i, and we take�0; �1; :::; �LN=K�1 since they have the best
localization in low frequencies. The design constraints translate
into the following system ofLN=K quadratic equations in the ex-
pansion coefficients,

KL=N�1X

l;m=0

c
(ik)
lm �l�m =

1

N
�[k]; 0 � i < N; 0 � k <

L

K
; (8)

where
c
(ik)
lm =

X

j

�l[i+ jN ]�m[i+ jN + kK]:



The design procedure then requires finding solutions of this sys-
tem corresponding to windows that give high values of the opti-
mization criterion in (6). This is particularly easy whenLN=K is
small, since the system, up to sign factor, has at most2(LN=K)�1

different solutions. For systems of higher orders, good solutions
are usually obtained if iterative procedures for solving this system
are started with the initial values,[�0

0 �
0
1 ::: �LN

K
�1], which have

all of their “energy” concentrated in coefficients with low indices.
A nice property of vectors�i is that even indexed vectors

are symmetric. So ifv is required to be symmetric then it can
be represented as the linear combination of the firstLN=K even
indexed vectors,�0; �2; :::; �2(LN=K)�2.

In order order to the satisfy design constraints whenLN=K
is considerably larger thanL=K, v needs to be represented using
many vectors�i which have0:00% energy in the band, and that
can have a bad impact on its frequency localization. However, as
the set of windows which are well localized in frequency is prac-
tically spanned by the firstL=K eigenvectors, all good windows
are close to the linear span of these vectors. Therefore, there are
always solutions where coefficients corresponding to the eigenvec-
tors with high indices have insignificant values, and these solutions
give good windows.

4. DESIGN EXAMPLES

The price paid by this new design procedure is that it does not at-
tain the global maximum of the design criterion. However, this
loss in energy concentration of the window at low frequencies
is not significant. In Figure 1, for comparison we plot curves
which represent the amount of energy of tight frame windows in
the frequency band[0; �=K] for window lengthsL = nK; n =
1; 2; :::;7, when the subsampling factorN = 1, i.e. the most re-
dundant case for a givenK. The upper curve corresponds to win-
dows with the highest energy content in the band, obtained using
the constrained optimization procedure. The lower curve repre-
sents windows obtained using the new method, and we can see
that the difference is insignificant. As the subsampling factorN
increases, the difference stays within few percent. These curves do
not depend onK (inverse of the frequency resolution of�v;N;K )
but only on the ratioLN=K. So, the curve for the constrained
optimization procedure is obtained forK = 16, since complexity
of this procedure increases withK and it becomes hardly imple-
mentable for large values ofK.

The new design procedure has pertained so far to windows
which are represented using minimal number,LN=K, of expan-
sion vectors needed to satisfy design constraints. Design results
can be improved if additional vectors are allowed, and windows
are optimized in the space ofLN=K + k expansion vectors�i.
Since vectors the�i form an orthonormal basis forRL, in this
manner we can approach the optimal windows arbitrarily closely.
For example, for the case�v;1;256, the best localized window of
length1024, represented with4 (minimal number) expansion vec-
tors has92:56% of its energy in the[0; �=K] band. With6 ex-
pansion vectors we attain a window with93:15% of its energy in
the band. Note that specifying these two windows requires4 and
6 coefficients respectively, while for windows obtained from the
constrained optimization, specification requires all1024 filter taps.
The best filters for frames�v;1;K of lengthL = 4K obtained us-
ing the constrained optimization procedure have93:49% of their
energy in the band (this is the result obtained forK = 8; 16; 32).
So, the new procedure gives slightly suboptimal design results
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Figure 1:Concentration of windows of tight frames�v;1;K in the
frequency band[0; �=K], for filters of lengthL = nK; n =
1; 2; :::;7. Top curve - windows obtained from the constrained
optimization procedure. Bottom curve - windows obtained using
the design method based on prolate spheroidal sequences.

with low complexity, but also leaves space for improvements based
on the trade off between complexity and quality of design.
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Figure 2:Magnitude responses (log-plots) of windows for frames
�v;1;K of lengthL = 6K. The window with sharper cut-off is
obtained with the constrained optimization procedure, whereas the
window with higher attenuation in the stop band is obtained using
the new design method.

Filters obtained from the new design procedure, with the
minimal number of parameters, usually have larger bandwidth than
filters obtained with the direct constrained optimization, however
they often have higher attenuation in the stop-band. This is illus-
trated in Figure 2, for symmetric filters for frames�v;1;K of length
L = 6K.

In Figure 3 we show the time domain plot of a symmetric
window for a tight frame�v;64;256. The length of this window
is L = 512 (L = 2K). This window has poor frequency local-
ization, i.e. only83:31% of its energy is in the[0; �=256] band.



Note that this is because for better localization longer filters are
needed, and that using the constrained optimization procedure for
symmetric filters of lengthL = 2K for frames�v;1;K , we were
not able to find filters with more than83:64% of energy in the
band. The reason we show this filter is to give an example of the
design when the number of expansion vectors needed to satisfy
the design constraints is significantly smaller than the number of
constraints. In this case, the total number of design constraints is
128, and the shown filter is represented using only first6 vectors
�i while satisfying the constraints with accuracy of order10�12.
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Figure 3: A window of length512 for a tight frame�v;64;256.
The total number of constraints in this case is128, and this win-
dow satisfies them accurately while being represented with only6
expansion coefficients.

The magnitude response of a window for a tight frame�v;16;256

is plotted in Figure 4. The filter length isL = 1024. The tight
frame constraints are satisfied with precision10�9. For compar-
ison, on the same graph we plot the magnitude response of the
rectangular window of lengthL = 256, which is the only finite
length window which makes�v;256;256 an orthonormal basis [3].
This demonstrates the advantages of introducing redundancy in
both allowing for windows with better frequency selectivity and
for facilitating design of long filters using the proposed algorithm.

5. CONCLUSION

In this paper, we proposed a method for designing windows for
discrete-time Weyl-Heisenberg frames. This method has general
applicability to the design of low-pass filtersunder nonlinear con-
straints. It is particularly appealing when the total number of con-
straints is not large, as in that case it allows for computationally in-
expensive designs of long filters and specifications of the designed
filters with only a few parameters.
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Figure 4:Magnitude response (log plot) of a1024 long filter for
a tight frame�v;16;256. For comparison, the magnitude response
of the only FIR window giving an orthonormal basis�v;256;256 is
also plotted (the less selective filter).
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[3] Z. Cvetković,“On Discrete Short-Time Fourier Analysis”,
preprint, September 1997.
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