AN INTRODUCTION TO MULTISCALE DEFINED SYSTEMS:
SELF-ORGANISING IFS FRACTAL NETWORKS

Graham C. Freeland & Tariqg S. Durrani

Signal Processing Division
Dept. of Electronic And FElectrical Engineering
University of Strathclyde
Glasgow G1 1XQ, Scotland, UK
{g.freeland, t.durrani}@eee.strath.ac.uk
http://www.spd.eee.strath.ac.uk/~ gcf/icassp98/

ABSTRACT

Deterministic multiscale defined representational forms have
found a significant role in the theory and application of sig-
nal processing over the last decade. With little argument
the most widely important for signal and system modelling
is likely to be multiscale defined wavelets. Another class
of multiscale representation which has attracted consistent
interest over the same period is the group of signal models
defined in terms of Iterated Function Systems (IFS). This
paper is concerned with widening the IFS application to in-
clude system modelling, particularly of neural network-like
structures. We introduce an interpolating IFS model as a
form of self-organising map with global fractal constraints.
Symbolic addressing is employed to discretize the attractor
into pseudo network nodes. We present in detail an on-
line gradient based algorithm for training. This particular
model is intended for efficient pattern recognition in com-
plex environments, for example, with multifractal sources
such as those seen in network traffic and general turbulence.

1. MOTIVATION AND BACKGROUND

1.1. Research Aims and Paper Outline

The core research presented in this paper is on the train-
ing of Iterated Function System (IFS) constrained networks
for use in pattern recognition-like problems. More gen-
erally it is part of a larger attempt to introduce and de-
velop the use of IFS models in a wider range of application,
particularly system representation. The initial motivation
stemmed from experiments carried out by the authors into
the behaviour of simple IFS defined nonlinear dynamics [1].
From this synthesis orientated work the question arose as
to whether IFS could be useful in a system analysis or mod-
elling role; much of their previous application has been lossy
image coding and compression.

Given the novelty of the programme, the first section of
the paper is concerned with justifying in detail our research
work by answering the following two questions,

e Can IFS be used to represent systems?

¢ Why use IFS to represent systems?

This work was supported by EPSRC under Contract
#GR/L16170

The overall representational possibilities of IFS models have
to be established and we begin by generalising the argu-
ment. We interpret them as a particular form of Multi-
scale Difference Equation (MSDE) model and restate the
connections with wavelet based representations. Focus re-
turns to the IFS specific case with a discussion of how the
benefits brought to other applications may be exploited in
system modelling and we introduce the example of (neural)
network models constrained by IFS. The subsequent sec-
tion describes at length the training algorithm for a two-
dimensional self-organising map (SOM) based on a one-
dimensional fractal interpolation function. We conclude
with brief comment on further research directions.

1.2. MSDE Representations
Multiscale Difference Equations (MSDE) While lin-

ear difference equations have always been a central rep-
resentional tool for most things, signals and systems, the
past decade has seen the rise in importance of a number of
generalisations to the basic model. One such extension is
the dilation equation or multiscale (or multirate) difference
equation (MSDE). Based around dilation and translation,
the generic system ‘input’ and ‘output’ now operate across
different scales:

y(t) = cw(at —bi) . (1)

This mathematical structure plays an implicit and defining
role in many aspects of modern theory and application.

Wavelets and Iterated Function Systems (IFS)
Perhaps the most significant single MSDE discovery, not
least by the broad range of interests which have embraced
it, is the class of time-frequency localised orthonormal basis
functions given by multiscale defined wavelets.

Another class of MSDE defined representation which
has attracted consistent interest over the same period is
the set of extensions to the basic Iterated Function Sys-
tems (IFS) first introduced by Barnsley. For a number of
reasons these models have experienced less penetration with
their main impact being restricted to lossy image coding
and compression. The original motivation for these particu-
lar image applications stemmed from the impressive coding
efficiency of IFS for ‘natural’ image patterns.

While quite different in their approaches to and abili-
ties for representation, there exist potentially valuable con-
nections between the above two techniques [2]. The exact

form and usage of the MSDE decide the associated models’
structure, properties and applicabilities.

Can IFS be usedl; to represent systems? The
success of this wavelet representation, for both signal and
system modelling, typically arises from the (orthonormal)
integral transform structure. A single MSDE specifies the
‘mother’ wavelet or basis function from which, via further
dilation and translation, the entire basis set of an orthonor-
mal transform is expanded. As such, the transform is capa-
ble of optimally (non-redundantly) representing any squared
integrable function.

A typical IFS approach to representation does not re-
sult in this classical linear algebraic solution. Again a single
MSDE is usually employed but, in strong contrast to the
above, this equation is defined explicitly in terms of (sub-
sets) of the entire ‘domain’ set. IFS based models generally
operate by approximation and do not offer the possibility
of lossless representation.

There are however highly redundant exceptions which
allow lossless signal representation [2]. This general appli-
cability is reinforced by the relationship between IFS coding
and wavelet representations (see ref. in [2]). To the extent
that ‘signals’ are temporal functions, IFS should be equally
capable therefore of modelling system transfer functions.

Why use IFS to represent systems? Of course
in using IFS for system modelling, we wish to retain and
exploit their beneficial features. These include,

e Simple, recursive specification
o Compressive description
e Discrete or symbolic interpretation

We can contrast this with neural network-like approaches to
system representation, whether they be for pattern recogni-
tion or nonlinear transfer function modelling, where wavelets
have played a role too.

In addition to providing ‘optimal’ performance, either
in terms of classification or prediction error reduction, it is
a typical requirement for the network to be of minimal size.
This system ‘compression’ is achieved by methods ranging
from parameter quantization to a posteriori pruning.

In this paper we represent networks in terms of IFS at-
tractors. Instead of looking for redundancy in the model
after training is complete, the IFS notation allows for an
arbitrary number of ‘nodes’ but imposes a global recursive
structure on the parameter set. Encoding is therefore im-
plicit to this model. An significant issue in training is how
to turn the ‘pointwise’ local updates of online training into
that which will update the entire set of maps. Central to
the network representation and subsequent training is use
of symbolic dynamics to discretize the attractor into a par-
tition, the subsets of which can be interpreted as pseudo
‘nodes’.

2. SELF-ORGANISING IFS NETWORKS

2.1. Self-Organising (Neural) Maps

The self-organising map (SOM) is a form of neural network
which acts to ‘compress’ high-dimensional data by extract-
ing and projecting data features and their topological rela-
tions onto a low dimensional network structure. They have
been found useful in a wide range of tasks, from computer
vision to communications [3]. Training typically proceeds

in a manner similar to that for vector quantization. In the
case of online training, network nodes often have a simple
update rule of the form,

mi(t+1) = mi(t) + & (O[X (1) — mr(t)] (2)

where X (t) is the current input vector and my is the k-th
node value. The exact form of the weighting function £x(t)
decides the training properties. The FIF model consider-
ing here has a similar outward structure but the impor-
tant difference is that global constraints are placed on the
node values and it is these constraints whose parameters
are to be trained. This implicitly allows for interesting new
possibilities such as network coding and interpolation and
extrapolation.

2.2. Fractal Interpolation Functions (FIF) as Net-
works

Basic FIF Mathematical Model The defining compo-
nents of the simplist IFS comprise a set of contractive maps
{wy} and an associated set of probabilities {p,}. The rep-
resentional object defined by the maps is the set of points,
known as the attractor R, that is attracting and invariant
under the collective action of the maps. This set displays
scale redundancy and, by virue of the contractive maps,
can be seen to be formed from smaller copies {wy(R)} of
the whole, R. In all that follows, the probabilities are as-
sumed such that there is a uniform distribution across the
attractor.

The attractor of the particular IFS variant considered
here, an example of an affine Fractal Interpolation Func-
tion (FIF), defines the graph of a mapping, F, from the
unit interval, / to a continuous curve C, embedded in the
plane, i.e. F([0,1]) = C. As might be expected with in-
terpolation functions, they are defined by a set of points
P = {(zn,(yn,2n)) : n = 0,1,..., N} (the set of interval
domain points {z,} is strictly increasing) through which
the set R =1 x C will then pass.

To formalize the associated model, we define and pa-

rameterise a finite set of N affine maps {w, : n =1,2,..., N}
of the form
T Gn 0 x €n
W, Yy = 0 dn hp Yy + Pn
An® 4+ en ~ Ln(x) ,
- An[z] + B | 7| Mty | P

such that they satisfy the requirement that, for all n,

(Tn-1 Yn—1 2n-1) (4)
(Tn-1 Yn—1 2n-1) (5)

wn(0 yo z0) =

wp(l yyv zny) =

The free parameters, which we will take to be the set of
pairs S = {dn, my}, are known as scaling parameters and
control the fractal dimension or irregularity of the curve.
To ensure contractivity their absolute values are taken to
be less than unity (when all zero, a piece-wise linear inter-
polation function results).

The key component to this FIF is that the 2-D curve
segments of C defined between the interpolation points well

be affinely contracted copies of the whole, and the struc-
ture is independent of the additional dimension z. As we
will see below, the purpose of the additional unit interval
dimension is to provide a method of parameterisation for
the curve based around the natural discrete partition. This
parameterisation is very useful in defining the error equa-
tions and in forcing the curve to behave in a ‘network’-like
fashion.

Invariance Relations and Symbolic Discretiza-
tion We have not yet formally described the way in which
the 2-D function F' = (f(1), f(2)) is invariant under the col-
lective action of the maps. We proceed by defining the
function operator 7' : F' — G,

G(z) = (TF)(x)
A F(L7(3)) + Bn (6)
for z € I, = [Tn-1,zn] and n € {1,2,...,N}.

where L, : (I =[0,1]) — (I, = [tn—1, zn]). If the absolute
values of vertical and horizontal scaling factors {d,,mn}
are all less than unity then the operator is contractive with
an attracting fixed point function, F'| i.e.

F(z)=TF(z) = /F(x)dx:/(TF)(x)dx (7)

Being attractive, for any initial function H, the sequence
T° H,i.e. the repeated application of T on H , will converge
towards F' as t — oo.

It is obvious that the set {I,} form a symbolic parti-
tion of the interval I. We denote the function F' restricted
to I, as Fy, or F(n) (similarly the restricted integral is de-
noted by (IF),) = (fIn flde, fIn f? d2)). This represents
the contracted affine copy of the entire curve C which ‘sits
between’ interpolation points (Yn—1, zn—1) and (yn, z») Le.
Mn(C) We can extend this domain restriction to finer par-
tition levels, writing,

F("lnz'“"M)(x) = {F(x) HERS 1"1"2"'"M} (8)
where Iningonpy = Lng (Dny (- Ly, (1))

The sequence ninsz - - - nas is known as the symbolic address
of Inyng -ny and Fining - -- na).

It 1s via this partition that we generate the pseudo net-
work or SOM. For a given level of partition, M, N™ ‘sub-
functions’ can be identified, F's = {Fnny...ny,))+ The end-
points of these function sets, Ps, are the offspring of the
interpolation points, i.e. the result of applying all (finite)
combinations of FIF maps to P,

Ps = {F(Ln1(L"2("'L"N({O’l}))))}"1"2m"M (9)
{Mnl (an("'MWN({P})))}"1W2~~”M . (10)

In defining ‘network nodes’ associated with this model, we
can proceed by two routes. The most direct is to use the
extended interpolation point set Ps. This result comes close
to what might be regarded as a ‘traditional’ constrained
network.

The alternative employed here is the use of the function
sets between these points as nodes, i.e. F's. Simply, each
curve ‘unit’ Fiy n,..n,,) is taken to represent a node. In-
stead of operating directly on the ‘node’ set, any training
or manipulation will be via their averages. This approach
leads to more generally applicable theory.

2.3. FIF Training

Algorithm Structure In undertaking the training of a
FIF network model, we proceed along the similar lines to
that for self-organising maps (after VQ). An input data
sequence X(t) acts as input to the online training procedure
which, for the purposes of this paper, follows a simple two
stage procedure involving,

e Nearest Neighbour Identification
¢ Global Parameter Update.

Only the update of the nearest node is considered but, since
the FIF constraint is a global one, even the update of a
single node will require change across the entire parameter
set. Even without the recursive constraint, the continuity of
the FIF model ensures that at least neighbouring elements
are effected. Our online training algorithm proceeds by
stochastic approximation minimisation and has the form,

)\k(t + 1) = Az (t) — &(t)&V/a)\k (11)

where V' is the integral error between the current FIF and
a target function incorporating the latest sample of input
data X (t). Dropping any dependency on the training time
t, the error functional is given by,

V= /IZ(fj(x,A) — uy(z))dz (12)

where fj(z,A) and u;(z) are the pair of dimensions of the
current FIF F| and target function U, respectively. The
range parameter set (2-D interpolation points and scaling
parameters) is denoted by A = (S, P). This set does not
include the domain coefficients {ax, €5} which are assumed
to be constant.

Since, for each update, the target input is a single point
X(t), it has to be used to specify a target function de-
fined for every point of the interval parameterised function,
F(z)Vz € I. As can be seen from equation (12), the er-
ror function is simply the integral of the pointwise error
between this target and the FIF. How we define U will de-
cide which ‘nodes’ are pulled towards the input vector and
which are left unchanged a la SOM.

Nearest Neighbour Identification and Updating
Suppose the depth of the scheme, M has been decided a
priori. Since the FIF curve is being interpreted discretely
through the partition, there is no real need to explicitly
calculate the distance between the given input vector X,
and every point on the curve. What is required is a mea-
sure of the distance between X and each function element
Finins..ny,) that may then be used to define the required
target U. Since the form of error functional V| is assumed
fixed, the mechanism by which this set of distances is turned
into U completely decides the type of error weighting. For
this paper we choose a simple nearest neighbour update
procedure: only the function element nearest to the input,

* .
Fp+ where n” = arg min
n1N...NpL

is targeted for change with all others being untouched (d
is some point to set distance measure). To implement this

update rule the target function is set to

Ups(z) = F(z)+ E if ¢ € [« (14)
Up=(z) = F(z) otherwise

where E = [e1, €2] = d(X, Fy»). This has the effect of win-
dowing out the appropriate subinterval for change. Again
note that while only a single element identified, it is typi-
cally defined by a mixture of the entire parameter set.

There are a number of implementional approaches to
the estimation of n*. We have developed a pointwise target-
ing algorithm which iteratively estimates the nearest subin-
terval at the given symbolic resolution. Details will be made
available in a followup paper.

Global Parameter Update The final stage of the al-
gorithm requires calculation of the error functional partials
with respect to each parameter Ay € A. A related problem
can be found in [4] and we proceed similarly to give,

o = % Z/Iz_:z(fj(f,/\)—u](x))%xéjx)dx] (15)

Once the symbolic address n* of the nearest neighbour
subinterval has been found, substitution of U+ reduces the

above to,
2
af](I,A)
=2 = 2dr . 16
an Z;/I P (16)
j= n

Now the problem becomes one of calculating the vector in-
tegral of JF /A, over a subpartition I, of the interval
which be denoted by (IdxF')(n=y. This may be calculated
efficiently by taking the partial derivatives of the operator
T (eqn (7)) and the invariance relations (7) (differentiation
under the invariance integral is possible [4]). The resulting
equations are boxed together under Table 1; further implicit
definitions employed are Idy F' representing the integral of
JF/3Xx over the entire unit interval and IF denoting the
integral of F' over the same. Remember that {a,,e,} are
assumed constant.

Firstly, the derivative of defining operator 7' results in
basic multiscale relation for (IdkF)(.). Using the recursion
relation (19) and the symbol sequence n*, one can itera-
tively calculate the required integral, (/dxF)(n+), starting
from Idg F' and IF. These may be explicitly calculated by
taking the derivative of the integral relation (7). Solving
the resulting pair (20) results in the required values. The
final update equations are

Me(t+1) = () = &) 2(Idi)y [1 1] (17)

Since there is insufficient space available to list the ac-
tual form of the derivatives we pass brief comment on their
structure. Remembering that the matrices A, and vectors
By, are designed to satisfy equations (4) & (5), some entries
in the parameter set will result in a more complicated up-
date rule than others. All the scaling parameter S updates
have a similar structure and so do the interpolation points
forn =2,3,..., N —1. As the endpoints (n = 0,n = N)
figure in all M,, their updating is more complicated.

When implementing this algorithm the most important
issue is to factor into {£x} the differing sensitivities between
the S and P. Additionally, the scalings must remain con-
tractive. Training can be speeded up by exploiting the im-
plicit hierarchical aspects of the model e.g. allowing the
symbolic depth M to vary with ¢. Full details will appear
elsewhere but simulation results will be presented at con-
ference.

3. FUTURE WORK

In this paper we have introduced and motivated a pro-
gramme of research aimed at employing Iterated Function
System as efficient, compressive signal models. The specific
application presented was in creating and training a simple
IFS constrained self-organising network.

With regard to further work, many opportunities ex-
ist. Immediate pattern recognition extensions exist allow-
ing decision regions to be created by completing IFS models.
We conjecture that in the case of data being drawn from
multifractal distributions, the optimal decisions regions will
have fractal basin boundaries. In such a senario FIF should
be able to outperform their smooth classical counterparts.
This approach leads to the interesting idea of an informa-
tion theoretic version of the IFS collage theorem.

4. REFERENCES

[1] G.C.Freeland and T.S.Durrani, The Application
of Fractal Signals to Communications. 1995 IEEE
Workshop on Nonlinear Signal and Image Process-
ing, pp. 775-778, Halkidiki, Greece, 1995.

[2] D.Saupe, A New View of Fractal Image Convolution
Transform Coding. IEEE Sig. Proc. Lett., Vol. 3, No.
7, pp. 193-195, 1996.

[3] T. Kohonen et al, Engineering Applications of the
Self-Organising Map. Proc. IEEE, Vol.84, No. 10,
pp. 1358-1383, Oct. 1996.

[4] W.D.Withers, Newton’s Method for Fractal Approz-
tmation. Constr. Approx., No. 5, pp. 151-170, 1989.

IF = (X, a,A)F+ (X, a,B,)

Id F = Zn(]dkF)(n) = (ZnanAn)]dkF‘l'(zna”aaé:

(IdF), = Jy, ode = fy, BEdr = a,A, Jy S5de + 0,58 f; Fdz 4, [; 2ads
= 4, A F + a, 52 TF + a, 55 Yne {1,2,... N}, (18)
(IdeF Y gng) =y Ay (e F) gy + iy 52 LF + 1, 520 (19)

IF . 2B
HE A (o an5y) (20)

Table 1: Partial Derivatives

