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ABSTRACT
In this paper, we investigate a modular architecture for ECG beat
classification. The feature space is divided into distinct regions
and individual classifiers are developed for each region. We
compare different combination strategies, and feature space
partition strategies.  We also describe a novel, batch modular
learning method that can be used to incrementally improve the
performance of the modular network.

1. INTRODUCTION
An ECG recording consists of a sequence of spiky beats each
representing one contraction of the heart. By analyzing the type
of the ECG beats, and the accompanying rhythms, a trained
electro-cardiologist can diagnose probable causes of anomalies in
the patient’s heart.
ECG beat classification is a difficult pattern classification
problem. The difficulties stem from many factors, including large
dimension of the feature space, large amounts of the training
samples, significant overlap between class boundaries and the
ever-changing morphology with time.
In this paper we use modular architecture to distinguish normal
heartbeats from those of premature ventricular contraction (PVC)
beats.
Modularity is a manifestation of the principle of divide and
conquers, so that we can solve a complex computational task by
dividing it into simpler subtasks and combining their individual
outputs.  In modular architecture, multiple classifier modules are
developed in parallel; each dedicated to classify a portion of the
entire feature space. Then, an integrating unit is developed to
combine the output of all modules to make a final decision.  In
communication, this technique is known as sensor fusion [23],
and in machine learning, as stack generalization [20].  In
artificial neural network paradigm terminology, this approach is
known as mixture of experts[8], [9], [21], or committee
classifiers [2], [4], [12], [17], [18].
A modular network offers several advantages over a simple
neural network in terms of providing better performance and
facilitating parallel learning.
(a)  Better Classification Performance: By partitioning the

feature space into localized regions, each module will have
a simpler classification task than a monolithic classifier, and
therefore a potential to offer better performance.

(b)  Parallel Learning: Modular learning allows for parallel
processing because individual modules are trained
independently.  This is extremely important when the size of
training set becomes prohibitively large.

In this work, we focus on developing a modular network with
multiple modules to handle large-scale ECG pattern
classification.  Our approach differs from our previous approach
[7] in that we separate the development of individual modules
and the integration unit into two separate phases of training. In
the first phase, the feature space is partitioned into smaller
regions by the integration unit, and a modular classifier is
developed on each region. In the second phase, based on the
outcome of each classifier, the integration unit is updated and the
feature space is re-partitioned. This process is repeated until the
performance saturates.
In this paper, we report experimental results comparing different
combination methods which include the winner decides all
method, and several fuzzy combination methods. We have also
experimented with different partitioning methods, including
random and clustering based approaches for the integration unit.
Each modular classifier is realized with a Learning Vector
Quantization (LVQ) [11].
Annotated ECG records from the MIT/BIH arrhythmia database
are used for the experimentation.

2. MODULAR LEARNING

2.1 The Basic Approach

A basic modular network is shown in Figure 1.  The individual
classifiers can be of the same type or can be of different types.
Each feature vector is presented to all modules.  The gating
network, (a.k.a. integration unit, or fusion center), whose inputs
are also the feature vector, determines the K module classifier
which should be given the responsibility to classify the present
feature vector. The gating network's output is assigned to 1, for
that classifier and 0 for the other classifiers. This way, the gating
network functions like a classifier. For each input feature vector,
it determines which classifier's output is to be passed and blocks
the output from the other classifiers.

2.2 Partitioning Methods

In the mixture of expert network architecture, the overall output
is a weighted sum of individual classifier's output:
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For pattern classification problem, we assume 0≤y(i)≤1 and the
target value t ∈{0,1}.  In [7], we proved the following theorem,
which is stated here without proof:



Theorem 1. Denote ℜi to be the region in the feature space R
such that the ith modular classifier gives correct classification.
Then the region C which the combined output is making correct
classification is bounded by ∪ ℜi  the union of ℜi.

Clearly, the maximum benefit of a modular network can only be
realized if all these ℜi are disjoint regions in the feature space.  If
one specific modular classifier is trained with training data
exclusively within a region in the feature space, it is more likely
that this module will correctly classify features within this region.
Based on this observation, in this paper, we experiment with two
partitioning methods. The first randomly partitions the feature
space into equal parts. The second method uses the SOM_PAK
[11] to generate cluster centers and the feature space is crisply
partitioned based on these cluster centers. Individual LVQs are
developed for each subspace.

 2.3 Combining Multiple Classifiers

The outputs are combined with a weighting factor provided by
the gating network (the integration unit).  Below we show that a
winner-takes-all strategy is optimal.

Theorem 2.  Let z,t ∈ {0,1}, 0 ≤  y(i), w(x,i) ≤ 1, and
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The solution to the constrained minimization problem:
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Proof:  Suppose that |t-y(i)| < |t- y(k)| for k ≠ i.  If w(x,i) < 1,
because the sum of w(x,i) over all i equals to 1, and w(x,i)
≥ 0,  there must be at least an i’ ≠ i, such that

1-w(x,i) ≥  w(x,i’) > 0.

First, consider the case t=1 and w(x,i) < 1. Note that 1-y(i)
< 1-y(k) implies y(i) > y(k) for k≠i. Now choose i’ such that
y(i’) > y(k) for  i’, k ∈ {k| k ≠ i, w(x,k) > 0}.  Then, y(i) >
w(x,i)y(i) + w(x,i’)y(i’)≥ z.  This leads to,

|t-z| = 1-z  ≥ 1-w(x,i)y(i)-w(x,i’)y(i’) > 1 - y(i)

In order words, |t-z| is NOT minimized.  Similarly, if t=0, then
y(i) < y(k) for k≠ i.  Choose i’ such that y(i’) < y(k)  for i’,k ∈ {k|
k ≠ i, w(x,k) > 0}.  Then, y(i) < w(x,i)y(i) + w(x,i’)y(i’) ≤ z.
Hence

|t-z| = z-0 > y(i) = y(i)-0

Again, |t-z| is NOT minimized.  Therefore, to minimize |t-z|, one
must have w(x,i) = 1 for y(i) > y(k), i ≠ k.  Q.E.D.

Theorem 1 guarantees the optimality of the winner-takes-all
combination rule in a modular network as it minimizes the output
error of the integration unit.  Note that although we use the
absolute error in the theorem, the same results can be proved
using other norms of the error t-z.

In the past, many different combination criteria have been
proposed for ensemble of classifiers.  In this paper, we will
experiment with a few of them and compare the results.

While the theorem 2 is optimal, it is not directly applicable to
modular pattern classifiers having binary output y(i) ∈ {0,1}.  In
this paper, we adopt a remedy by weighing the output of the
modular classifier by a scaling factor

S(x,i) = K/f(d(x,i))

where d(x,i) = ||x-c(i)||2 is the Euclidean distance between c(i),
the cluster center of the disjoint region within which the i-th
modular classifier is trained, and x, the present testing feature
vector. Three different choices of the function f() have been
compared in this paper:

(a)  Inverse distance:   S(x,i) = K/d(x,i)

(b)  Winner decides all:   S(x,i*) = 1,  if d(x,i*) < d(x,k), k≠i*;

                                                    = 0, otherwise.

(c)  Power method:  S(x,i) = K’/[d(x,i)]µ, 1 < µ < ∞.

K and K’ are scaling constant, chosen to satisfy eq. (2).  The
underlying heuristic in using S(x,i) is that a modular classifier
would in general give more accurate classification result when a
sample is closer to the clustering center where most of its training
samples locate.  Note that 0≤ S(x,i)y(i) ≤ 1. Hence, theorem 2 can
be applied to choose the optimal weighting factor.

3. EXPERIMENTS AND RESULTS

3.1 ECG Data and Feature Vectors

The annotated ECG records from the MIT/BIH arrhythmia
database [14] have been used in this study. This database has 48
records, each 30 minutes in length. The data were recorded in
two channels (modified limb lead II and modified lead VI) of
surface ECGs from long-term Holter recorders. They represent a
variety of waveforms, artifacts, complex ventricular, junctional,
and supraventricular arrhythmias, and conduction abnormalities.
Data from 33 of the 48 records which contain normal beats and
PVCs were used for this study. Classifiers were developed and
evaluated using subsets of data from channel 1 of these 33
records sampled at 360 Hz.
Accompanying each record in the database is an annotation file
in which each ECG beat has been identified by expert
cardiologists. These labels, referred to as ‘truth’ annotations, are
used to develop the classifiers and to evaluate the performance of
the classifiers in the testing phase. Data is extracted in the form
of feature vectors. Each feature vector has 9 elements. The first
four feature elements are temporal parameters. The temporal
features are the R–R interval between the current beat and the
previous beat (RR1), between the previous beat and the one
before it (RR0), between the current beat and the next beat
(RR2), and the ratio of RR1 and RR2. These features are
extracted for each individual beat in the database. A ratio of RR1
to RR0 provides an indication of an abnormal timing sequence
and helps in identifying an abnormal beat. The next 5 feature
elements are extracted based on morphology. The ‘truth’
annotations are appended to the feature vectors. Detailed
descriptions of these features can be found in [16].



3.2 Experiment

We use the three-way cross validation method to improve the
reliability of the results. The original data set is partitioned
randomly into three subsets. We combine two of the subsets to
generate the training data set, and use the third as the testing set.
The subsets are rotated to yield three training-testing data set
pairs. These results are averaged to obtain the final results.
To compare the performance of the multiple classifier approach,
we conduct a base line experiment using a single LVQ to classify
the entire feature space (the monolithic classifier).
The number of subspaces is empirically chosen to be five. The
default parameters of the LVQ_PAK(ver 3.1) are used to
generate the classifiers. The number of codebook vectors is
chosen at 0.5% of the number of feature vectors in the set. It is
observed that the performance curve tends to saturate with
increasing values of the number of code book vectors and the
saturation starts at 0.5% in this case. This method of choosing the
number of codebook vectors for each LVQ, is not universal. It is
highly subjective and is dependent on the distribution of the
feature vectors in the feature space. To generalize the process we
use the novel, batch modular learning method, to incrementally
improve the performance of the modular network. The LVQs in
this case are set to have a fixed number of codebook vectors. The
incremental training moves the region boundaries to improve the
classification results.
The majority rule is used to combine the individual outputs when
the partitioning is done randomly. We use µ = 50.0 for the power
method. A Normal beat takes a class index of 0 and a PVC beat
takes a class index of 1

3.3 Results Reporting

A two-class ECG beat classification problem can be regarded as
a hypothesis testing problem with:

Null Hypothesis H0 : The Beat is Normal

Alternate Hypothesis Ha : The Beat is PVC

We compute both type I and type II errors from the experiments:

Type I Error (α)  probability of rejecting the Null hypothesis
when it is true, also known as the false alarm rate

Type II Error (β) probability of accepting the Null Hypothesis
when it is false, also known as the miss ratio.

These error measures are tightly related to the AAMI reporting
protocol which requires the statistics of the following:

Actual \ Classified PVC Beat Normal Beat
PVC Beat TP(true positive) FN(false negative)

Normal Beat FP(false positive) TN(true negative)

TP:  Number of PVC beats classified correctly.
TN:  Number of Normal beats classified correctly.
FP:  Number of Normal beats classified as PVC beats.
FN:  Number of PVC beats classified as Normal Beats.
Specifically,

α = FP/(TP+TN+FP+FN)
β = FN/(TP+TN+FP+FN)

According to AAMI recommendation, sensitivity is the fraction

of real events that are correctly detected.  That is

Sensitivity (Se) = TP/(TP+FN)

Specificity is the fraction of non-events correctly rejected.

Specificity  (Sp)  = TN/(TN+FP)

We can re-write α and β as follows

α = (1-Sp)*Pn; β =(1-Se)*Pp

Where, Pn = (FP+TN)/(TP+TN+FP+FN) is the prior
probability of observing a normal beat;  and

Pp = (FN+TP)/ (TP+TN+FP+FN) is the prior probability of a
PVC beat.

The values of sensitivity and specificity must ideally tend to one
and the errors must be as close to zero as possible. However
there is often a trade-off between the sensitivity and specificity,
resulting in a similar trade-off between the type I and II errors.

3.3 Results

The results are summarized below.

Method TP FN TN FP Se Sp α β
Mono 5627 898 59892 5358 86.23 91.79 0.1251 0.0074

Eucli 4279 2246 59107 6143 65.58 90.59 0.3129 0.0086

Winner 5620 905 62460 2790 86.13 95.72 0.1261 0.0039

Power 5547 978 62643 2607 85.01 96.00 0.1363 0.0032

Rand 5926 599 55527 9723 90.82 85.10 0.0835 0.0135

Table 1.  Using 0.5% for the number of codebook vectors

Method TP FN TN FP Se Sp α β
Eucli 1973 201 19138 2612 90.73 87.99 0.0843 0.0109

Winner 1858 317 20858 891 85.42 95.90 0.1325 0.0037

Power 1858 316 20858 892 85.44 95.90 0.1324 0.0037

Table 2.  Using the novel, batch modular learning method.

5. SUMMARY
The results show that the modular approach yields better
performance characteristics as compared to the monolithic case.
Among the partitioning methods the clustering approach gives a
higher specificity although we lose out a bit on the sensitivity.
The novel, batch modular learning method gives comparable
results and is preferred due to its universal applicability. Figure 2
shows the iterative improvement in performance for the three
combination methods considered. The tendency of the classifier
to do better on the specificity is due to the higher number of
Normal beats, as compared to PVC beats, in the training data set.
The number of Normal beats is ten times that of the PVC beats.
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Figure 1. Modular Network

Figure 2. Performance curves for the Euclidean Distance,
Winner Decides All and the Power Cases.


