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ABSTRACT

Wavelet-domain Hidden Markov Models (HMMs) are a potent new
tool for modeling the statistical properties of wavelet transforms. In
addition to characterizing the statistics of individual wavelet coeffi-
cients, HMMs capture the salient interactions between wavelet co-
efficients. However, as we model an increasing number of wavelet
coefficient interactions, HMM-based signal processing becomes in-
creasingly complicated. In this paper, we propose a new approach to
HMMs based on the notion ofcontext.By modeling wavelet coef-
ficient inter-dependencies via contexts, we retain the approximation
capabilities of HMMs, yet substantially reduce their complexity. To
illustrate the power of this approach, we develop new algorithms for
signal estimation and for efficient synthesis of nonGaussian, long-
range-dependent network traffic.

1. INTRODUCTION

Wavelets present a powerful alternative to classical time-domain and
frequency-domain approaches to statistical signal processing. In
many instances, wavelets provide a compact, easy-to-model signal
representation [1,2].

For statistical applications ranging from compression to estima-
tion to detection, the key to successful wavelet-based algorithms is
an accurate joint probability model for the wavelet coefficients of
our signals of interest. A complete model for the joint probability
density functionfW(w), with w the vector of wavelet coefficients,
is one possibility. However, such a characterization is intractable
in practice, from both a computation and a robust estimation view-
point. At the other extreme, modeling the wavelet coefficients as
statistically independent, withfW(w) =

Q
i
fWi(wi), is simple

but disregards the inter-coefficient probabilistic dependencies. To
strike a balance between these two extremes, we must model the key
wavelet coefficient dependencies, and only the key dependencies.

By design, wavelet-domain Hidden Markov models (HMMs) fo-
cus on the key wavelet coefficient dependencies, learning them via
maximum-likelihood-based training [3, 4]. Hence, HMMs provide
a natural setting for exploiting the structure inherent in real-world
signals and images for signal estimation, detection, classification,
prediction and filtering, and synthesis.

In this paper, we propose a new wavelet-domain signal model-
ing framework based oncontextual HMMs.Contexts provide flex-
ible conditional probability models for efficiently learning and ex-
pressing the dependencies in wavelet transforms. Before we develop
these new models, we sketch some background on wavelets, mixture
models, and wavelet-domain HMMs.

2. BACKGROUND

2.1 The Wavelet Transform. The discrete wavelet transform
(DWT) represents a one-dimensional signalz(t) in terms of shifted
versions of a lowpass scaling function�(t) and shifted and di-
lated versions of a prototype bandpass wavelet function (t) [5].
For special choices of the wavelet and scaling functions the atoms
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Figure 1: Tiling of the time-frequency plane by the atoms of the wavelet
transform. Each box depicts the idealized support of a scaling atom�i (top
row) or a wavelet atom i (other rows) in time-frequency; the solid dot at the
center corresponds to the scaling coefficientui or wavelet coefficientwi. The
figures also illustrates our tree notation for indexing neighboringcoefficients.
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�
,

J;K 2 ZZ, form an orthonormal basis, and we have the signal repre-
sentation [5]

z(t) =
X
K

uJ0;K �J0;K(t) +

J0X
J=�1

X
K

wJ;K  J;K(t); (1)

with uJ;K �
R
z(t)��J;K(t)dt andwJ;K �

R
z(t) �J;K(t) dt.

Thewavelet coefficientwJ;K measures the signal content around
time 2JK and frequency2�Jf0. The scaling coefficientuJ;K mea-
sures the local mean around time2JK. The DWT (1) employs scal-
ing coefficients only at scaleJ0; scaling coefficients at scalesJ < J0
represent higher resolution approximations to the signal. Any fil-
terbank or lifting DWT implementation produces all of the scaling
coefficientsuJ;K , J < J0 as a natural byproduct [5].

To keep the notation manageable in the sequel, we will adopt
an abstract index system for the DWT coefficients:uJ;K ! ui,
wJ;K ! wi, with J(i) the scale of the coefficienti. We will also
usew to denote the vector of all wavelet coefficients.

The DWT has a natural interpretation in terms of a tree structure
in the time-frequency domain (see Figure 1). In order to describe the
relationships between wavelet coefficients, we will use standard tree
notation for the parent�(i), left l(i) and rightr(i) neighbors, and
left cl(i) and rightcr(i) children of a nodei.1

2.2 Gaussian Mixture Models. The DWTs of many real-world
signals tend to be sparse, with just a few non-zero coefficients con-
taining most of the signal energy [2]. Hence, the marginal density2

fWi(wi) of each wavelet coefficient is typically described by a
peaky (atwi = 0) and heavy-tailed nonGaussian density.

Such densities are well approximated byGaussian mixture mod-
els [6]. To each wavelet coefficientWi, we associate a discrete hid-
den stateSi that takes on valuesm = 1; : : : ;M with pmf pSi(m).

1For clarity, we will assume throughout this paper that the lengthL of the
signal is a power of two and furthermore that we take the maximum number
of scalesJ = log2 L in the DWT. However, all results extend to signals of
arbitrary length, as well as to DWTs with fewer than the maximum possible
number of scales (in which case, we have a forest of wavelet trees [4]).

2We will usepS(s) to denote the probability mass function (pmf) of the
discrete random variableS andfW (w) to denote the probability density
function (pdf) of the continuous random variableW .
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Figure 2:Statistical models for the wavelet transform. We model each co-
efficient as a Gaussian mixture with a hidden state variable. Each black node
represents a continuous wavelet coefficientWi. Each white node represents
the hidden mixture state variableSi . Connecting the states vertically across
scale yields the Hidden Markov Tree (HMT) model. Removing these links
yields the Independent Mixture (IM) model.

Conditioned onSi = m, Wi is Gaussian with mean�i;m and vari-
ance�2i;m. Thus, its overall pdf is given by

fWi(wi) =

MX
m=1

pSi(m) fWijSi(wijSi =m): (2)

To generate a realization ofWi using the mixture model, we first
draw a state valuesi according topSi(si) and then draw an obser-
vationwi according tofWijSi (wijSi = si).

2.3 Hidden Markov Models. One simple approach to approxi-
mating the joint densityfW(w) would treat the wavelet coefficients
as independent Gaussian mixtures. The result — the Independent
Mixture (IM) model — has proven useful for signal estimation ap-
plications [6]. The primary motivation for this model lies in the fact
that the DWT acts as an approximate Karhunen-Lo`eve transform for
a wide class of signals, and therefore the wavelet coefficients are
approximately decorrelated.

However, the wavelet coefficients of real-world signals are
not statistically independent in general. For instance, neighboring
wavelet coefficients are often highly dependent— large/small coeffi-
cient values tend to propagate both within and across scales, creating
clusters of large/small coefficients [3,4].

Wavelet-domain Hidden Markov models(HMMs) are multidi-
mensional mixture models in which the hidden states have a Markov
dependency structure. The idea is to capture the dependencies in the
wavelet coefficients through their hidden states. For example, the
Hidden Markov Tree (HMT) model places a tree structure on the
hidden states to capture wavelet dependencies across scale (See Fig-
ure 2) [3,4]. The HMT model is specified via the mixture parameters
�i;m; �

2
i;m and transition probabilitiespSijS�(i) (mjn).

Before we process signals using a wavelet-domain HMM, we
first must train the model to capture the wavelet-domain properties
of the signals of interest. That is, we determine the wavelet-domain
HMM parameters that best characterize our observed wavelet co-
efficients. This standard HMM training problem can be efficiently
accomplished (in linear time per iteration) using the iterative Expec-
tation Maximization (EM) algorithm [7].3

Although the HMT model is powerful and relatively simple, in
certain applications it is crucial to model more and different depen-
dencies between the wavelet coefficients (such as across time and
across scale simultaneously). More sophisticated dependency struc-
tures for the hidden states can be formulated using the theory of

3EM algorithm intuition: If the values of the statesSi were known, then
maximum-likelihood parameter estimation would be simple. Therefore, we
iterate between estimating the probabilities for the states (Expectation) and
updating our model given the state probabilities (Maximization). Under mild
conditions, this iteration converges to a local maximum of the likelihood
function.

(a) (b)

Figure 3: Context-based models for the DWT. (a) To each wavelet
coefficient-hidden state pair(Wi; Si), we augment a (square) context node
Vi. The context vector is a function of the other wavelet and scaling co-
efficients. (b) Example contextVi formed using four wavelet coefficients
neighbouringWi.

probabilistics graphs [4, 8], but the analysis and training of more
complicated HMMs becomes extremely difficult [8]. For example,
graphs with links that form cycles cannot be modeled using transi-
tion probabilities due to lack of a causal direction.

3. CONTEXT-BASED HIDDEN MARKOV MODELS

In this paper, we will usecontextsto efficiently incorporate depen-
dencies into our HMMs. We define the context forWi as a length-
P vectorVi � [Vi;1; Vi;2 ; : : : ; Vi;P ] formed as a function of the
wavelet or scaling coefficients (see Figure 3). We conditionSi on
Vi to predictWi. The idea is forVi to provide supplementary in-
formation to the HMM, so that given the context, we can treat the
wavelet coefficients as independent.

By conditioning (2) onVi (with the added assumption thatVi

andWi are independent givenSi), we have the context-based mix-
ture model for the wavelet coefficients:

fWijVi
(wjvi) =

MX
m=1

pSijVi
(mjvi) fWijSi(wjSi =m): (3)

In this case, the mixing probabilities depend on the value of the con-
textVi. If Vi is highly correlated withWi, then (3) will provide a
much more accurate characterization of the distribution ofWi than
(2). In practice we do not specifypSijVi

(mjvi) directly, but rather
specifypVijSi (vjm) and apply Bayes rule4

pSi jVi
(mjvi) =

pSi(m) pVijSi(vijm)PM

m=1
pSi (m) pVijSi(vijm)

: (4)

Defining �i;m � pSi (m) and�i;v;m � pVijSi (vijm), the
context-based HMM (CHMM) is parameterized by the vector� =�
�i;m; �

2
i;m; �i;m; �i;v;m

	
:Given an observation of wavelet data

w, we estimate� using the EM algorithm below. When only a sin-
gle signal observation is available, we make the standard assumption
that the wavelet coefficients in each scale are identically distributed.
Multiple signal observations, multiple wavelet trees, as well as mod-
els for the scaling coefficients, can be handled as in [4].

EM Algorithm for CHMMs

Initialize: Choose�0 and setI = 0.

Expectation (E): Given�I , calculate (Bayes rule)

pSijVi;Wi
(mjvi; wi) =

�i;m �i;vi;m fWijSi(wijm)PM

m=1 �i;m �i;vi;m fWijSi(wijm)
:

4Here, we assume that the context is discrete-valued. We can model a
continuous-valuedVi as anM -component Gaussian mixture of its own, re-
placingpVijSi (vijm) in (4) with fVijSi (vijm). We will find this useful
in Section 4.2.



Maximization (M): Compute the elements of�I+1

�i;m =
X

k s:t: J(k)=J(i)

pSijVi ;wi
(mjvi; wi);

�i;m =
1

2J0�J(i)�i;m
�

X
k s:t: J(k)=J(i)

wk pSkjVk;Wk
(mjvk; wk);

�2i;m =
1

2J0�J(i)�i;m
�

X
k s:t: J(k)=J(i)

(wk � �i;m)2 pSkjVk;Wk
(mjvk; wk);

�i;v;m =
1

�i;m

X
k s:t: J(k)=J(i);vk=vi

pSijVi ;Wi
(mjvi; wi):

Iterate: IncrementI ! I + 1. Apply E and M until converged.

In contrast to the HMT E step [4], the CHMM E step is very
straightforward. To ensure fast and robust training, we keep the num-
ber of free parameters in each context vector to a minimum.

4. APPLICATIONS

To illustrate the flexibility of the CHMM framework, we now apply
these models to two distinctly different problems: signal denoising
and synthesis of long-range-dependent data network traffic.

4.1 Denoising. DWT methods have proved remarkably successful
for estimating signals corrupted by additive white Gaussian noise
(WGN) [2–4,6]. The superior results of HMT model denoising have
demonstrated that significant performance gains can be achieved by
exploiting dependencies between wavelet coefficients [4]. Using a
CHMM, we seek similar gains, but with reduced complexity.

Since the orthogonal DWT of zero-mean WGN is again zero-
mean WGN of the same power, the signal estimation problem can
be posed in the wavelet domain as: Estimate the wavelet coeffi-
cientsyi of a signal given the noisy measurementswi = yi + ni,
with fnig a WGN process of variance�2n. As in [4], we adopt an
“empirical” Bayesian approach and model the signal wavelet coef-
ficientsYi using a two-component Gaussian mixture (M = 2) with
�i;1 = �i;2 = 0.

If we knew the hidden stateSi of Yi, then the minimum-mean-
squared-error (MMSE) estimate would be the conditional mean es-
timate of a Gaussian signal in Gaussian noise

E[Yijwi; Si = m] =
�2i;m

�2i;m + �2n
wi: (5)

Given probability estimates for the hidden statesSi, we estimateYi
as the conditional mean

E[Yijwi;vi] =

2X
m=1

pSi jwi;vi (mjwi;vi) E[Yijwi; Si =m]: (6)

If Yi is a mixture of zero-mean Gaussians, thenWi is also a mixture
of zero-mean Gaussians — the addition of zero-mean independent
Gaussian noise increases the variance of each mixture component by
�2n, but leaves the stateSi unaffected. Hence, we train our CHMM
on the the noisy wavelet dataW to estimate the hidden state prob-
abilities of the signalpSijwi ;Vi

(mjwi;vi) and (by subtracting�2n)
the signal mixture variances�2i;m. We then calculate the estimates

Table 1: Denoising results for Donoho and Johnstone’s length-1024 test
signals [2]. Noise variance�2n = 1.

Method Mean-squared error
Bumps Blocks Doppler Heavisine

SureShrink [2] 0.683 0.222 0.228 0.095
Bayesian [6] 0.350 0.099 0.165 0.087

IM 0.335 0.105 0.170 0.080
HMT 0.268 0.079 0.132 0.081

Context 1 0.252 0.101 0.141 0.081
Context 2 0.249 0.099 0.141 0.079

(6) and invert the DWT to obtain the denoised signal. (See [4] for
more details on a similar approach based on the HMT model.)

What remains is to specify contexts that are simple, yet effective,
for gleaning information on the hidden states. Two simple discrete
contexts that exploit clustering of signal energy in the wavelet do-
main [4] illustrate our approach. Defineqi as the quantized value of
the wavelet coefficientwi: Setqi = 1 if jwij

2 is greater than the
average energy in its scale, otherwise, setqi = 0. The first context
contains quantized values of the neighboring wavelet coefficients

V
(1)
i =

�
q�(i); ql(i); qr(i); qcl(i) ; qcr(i)

�
; (7)

and thus conveys gross information about the size of the neighboring
coefficients. Our intuition is that ifw�(i) andwcl(i) are large, then
there is a good chance thatwi will be large as well. To encode such
information (“large” vs. “small”), even crudely quantized informa-
tion is sufficient. The second context combines elements ofV

(1)
i

using logicalor operations “_”

V
(2)
i =

�
q�(i); ql(i)_qr(i); qcl(i)_qcr(i)

�
: (8)

To further reduce complexity, we also assume that the context prob-
abilities factor aspVijSi (vijm) =

QP

j=1
pVi;j jSi(vi;j jm).

In Table 1, we provide the MSE results for denoising Donoho
and Johnstone’s standard test signals [2] using CHMMs versus other
state-of-the-art algorithms. Contexts 1 and 2 correspond to our pro-
posed algorithm using the contexts defined in (7) and (8), respec-
tively. Implementation details, such as the exact DWTs used, are
provided in [4].

The key benchmarks for comparison are the IM and HMT mod-
els from [4]. IM denoising employs a mixture model that treats the
signal wavelet coefficients as independent. Improvements over IM
signify the context’s ability to capture and exploit dependencies be-
tween coefficients. Overall, the MSE performance of the context-
based approach is roughly comparable to the considerably more
complicated HMT denoiser of [4].

4.2 Signal Synthesis.Recent studies have shown that data network
traffic is statistically self-similar and exhibits the long-range depen-
dence characteristic of slowly-decaying correlation functions [9].
These properties are difficult to model using classical traffic models
involving Poisson or Markov processes. Complicating matters fur-
ther is the fact that actual network inter-arrival times are nonGaus-
sian, positive, and heavy-tailed [9]. Classical self-similar process
models, such as fractional Brownian motion (fBm) can capture the
long-range dependence of network traffic; however, fBm is a Gaus-
sian process, and current methods for its synthesis are computation-
ally intensive (up toO(L3) complexity for anL-point trace). New
tools for analyzing and synthesizing very long traces of such data are
important for network design and control, since classical models can
severely overestimate network performance.

Our goal is to develop a fast wavelet-based synthesis algorithm
consistent both with the long-range dependence and the positive,
nonGaussian marginal statistics of network traffic. Our approach



will be to first train a CHMM on an actual traffic trace, and then syn-
thesize artificial traffic with “equivalent” statistical properties. By
characterizing how the wavelet coefficient variances change with
scale, CHMMs can approximate the long-range dependence prop-
erties of the data. By using the Haar scaling coefficients as contexts,
CHMMs can capture the positive, nonGaussian marginal properties
of the traffic as we will show.

Using a Haar DWT [5], we will associate with eachwi (wJ;K

in the notation of Section 2.1) its corresponding scaling coefficient
ui (uJ;K in the notation of Section 2.1). Sinceui corresponds to
a local mean of the (positive) signal, we know thatui > 0, 8i.
Moreover, since for the Haar DWTucl(i) = 2�1=2(ui + wi) and
ucr(i) = 21=2(ui � wi), we must havejwij < ui, 8i.

Because of this clear dependence, we use the random variable
Vi = Ui as the context for the random variableWi. We modelUi
as a Gaussian mixture, with the parameterse�i;m;e�2i;m updated in
the M step in a fashion similar to the updates for�i;m; �

2
i;m.

In essence, this procedure employs a mixture model to approx-
imate the 2-d density for(Ui;Wi) and then uses the 2-d density to
obtain a conditional density forWi based onUi. With enough mix-
ture parameters, this approach in theory can approximate(Ui;Wi)
to arbitrary precision, hence automatically learning the constraints
Ui > 0 andjWij < Ui.

In practice, to simplify our modeling, we map the coneUi > 0,
jWij < Ui to the plane through the invertible mapg : (Ui;Wi) 7!�
log(Ui); �sgn(Wi) log(1�jWij=Ui)

�
. By modelingg(Ui;Wi)

and then inverting to form(Ui;Wi), we automatically enforce the
positivity constraints. To synthesizeWi givenUi, we mapUi to
log(Ui), use it as a context to synthesize the transformed data, gen-
erate a realization, and then invert the mapg to produceWi.

To synthesize an entire wavelet transformW, we work in “top-
down” fashion starting from the root of the wavelet tree by synthe-
sizing the single coarsest scale wavelet coefficient. (We assume its
context, the global mean of the signal, is already specified.) We it-
erate down the tree using the fact that summing and differencingUi
andWi provides the context information for synthesizingWcl(i) and
Wcr(i).

As a test, we trained the CHMM synthesis algorithm on a portion
of the Bellcore Ethernet data (the first106 arrivals of the day-long
trace started August 29, 1989) [9]. The model was equipped with
ten mixture-components (M = 10) at each wavelet scale. In Fig-
ure 4, we compare, over different time scales, a random realization
from our synthesis algorithm with the actual data. In Figure 5, we
illustrate the histogram fit that our synthesis algorithm achieves over
different time scales.

As is evident from the Figures, CHMM synthesis captures both
the marginal properties of the traffic and, because of the match over a
number of time scales, the long-range dependence as well. For syn-
thesis applications, CHMMs are both accurate and fast (O(L) oper-
ations), demonstrating the power of the context-based framework.

5. CONCLUSIONS

CHMMs have a number of potential advantages over conventional
HMMs for exploiting the wavelet-domain structure inherent in real-
world signals. First, CHMMs allow the user to characterize depen-
dencies that may be too complex or even downright impossible to
model using standard HMMs. Second, although efficient algorithms
exist for HMMs based on trees, for more complicated graph struc-
tures (such as 2-d HMMs for images), the training procedure can
become intractable. CHMMs deal naturally with noncausal informa-
tion, yet retain the simplicity of a causal model. The explanation lies
in the fact a CHMM consists essentially of a series of local models,
each with a small number of parameters, that can be trained inde-
pendently. More traditional HMM models, on the other hand, adjust
their parameters to optimize a complicated global objective function.

Actual Synthesized
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Figure 4:Network data traffic synthesis via CHMM. Inter-arrival times as a
function of packet group number plotted for (top) one, (middle) ten, and (bot-
tom) one-hundred packets. The actual traces consist of approximately106

packet arrivals, but only the inter-arrival times of the first groups of packets
are shown.

Actual Synthesized

0 0.02 0 0.02

0 0.12 0 0.12

0 0.7 0 0.7

Figure 5: Histograms of the inter-arrival times corresponding to the data
from Figure 4 for groups of (top) one, (middle) ten, and (bottom) one-
hundred packets.

The primary disadvantage of the CHMM framework is that it
lacks the feedback mechanism of more traditional HMMs that allow
the model to propagate information from variables across the entire
model, hence capturing dependencies from more than just neighbor-
ing wavelet coefficients. However, in many instances, we expect the
convenience and efficiency of the context approach to outweigh this
potential limitation.
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