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ABSTRACT o t

Wavelet-domain Hidden Markov Models (HMMs) are a potent new
tool for modeling the statistical properties of wavelet transforms. In
addition to characterizing the statistics of individual wavelet coeffi-
cients, HMMs capture the salient interactions between wavelet co-
efficients. However, as we model an increasing number of wavelet
coefficient interactions, HMM-based signal processing becomes in-
creasingly complicated. In this paper, we propose a new approach to
HMMs based on the notion @ntext. By modeling wavelet coef- =igure 1: Tiling of the time-frequency plane by the atoms of the wavelet
ficient inter-dependencies via contexts, we retain the approximafidiisform. Each box depicts the idealized support of a scaling atoftop
capabilities of HMMs, yet substantially reduce their complexity. Tow) or a wavelet atonp; (other rows) in time-frequency; the solid dot at the
illustrate the power of this approach, we develop new algorithms &enter correspondsto the scaling coefficienor wavelet coefficient;. The
signal estimation and for efficient synthesis of nonGaussian, lofigires also illustrates our tree notation for indexingghéioring coefficients.
range-dependent network traffic.

1. INTRODUCTION oty =277 (27t - K), ¢sx(t) = 277 ¢(277t - K),
Wavelets present a powerful alternative to classical time-domain dnd € Z, form an orthonormal basis, and we have the signal repre-
frequency-domain approaches to statistical signal processing.Séftation [5]

many instances, wavelets provide a compact, easy-to-model signal 7o

representation [1, 2].
For statistical applications ranging from compression to estimaz(t) = Z“JDJ" ¢ 10,5 (8) + Z Zwﬂ“/’ﬂ"(t)v @)
tion to detection, the key to successful wavelet-based algorithms is K J=—co K
an accurate joint probdity model for the wavelet coefficients of . N .
our signals of interest. A complete model for the joint probabiliWIth s = [2(t) 85 (t) dt andwy,x = [5(t) 7 () dt.
density functionfw (w), with w the vector of wavelet coefficients, Thjevyaveletcoefﬂcnenbjm measures the signal contentaround
is one possibility. However, such a characterization is intractaBfée 2” & and frequencyg ™" fo. The scaling coefficient ; x mea-
in practice, from both a computation and a robust estimation vieswes the local mean around timék . The DWT (1) employs scal-
point. At the other extreme, modeling the wavelet coefficientsiag coefficients only at scal& ; scaling coefficients at scalds< Jo
statistically independent, witliw (w) = [], fw,(w:), is simple represent higher resolution approximations to the signal. Any fil-
but disregards the inter-coefficient probabilistic dependencies. taidank or lifting DWT implementation produces all of the scaling
strike a balance between these two extremes, we must model theefficientsu s -, J < Jo as a natural byproduct [5].
wavelet coefficient dependencies, and only the key dependencies. To keep the notation manageable in the sequel, we will adopt
By design, wavelet-domain Hidden Markov models (HMMs) f@&n abstract index system for the DWT coefficienis; x — u,,
cus on the key wavelet coefficient dependencies, learning themwiax — w;, with J(7) the scale of the coefficient We will also
maximum-likelihood-based training [3, 4]. Hence, HMMs providégsew to denote the vector of all wavelet coefficients.
a natural setting for exploiting the structure inherent in real-world The DWT has a natural interpretation in terms of a tree structure
signals and images for signal estimation, detection, classificatiorthe time-frequency domain (see Figure 1). In order to describe the
prediction and filtering, and synthesis. relationships between wavelet coefficients, we will use standard tree
In this paper, we propose a new wavelet-domain signal modwitation for the parend(z), left {(z) and rightr(s) neighbors, and
ing framework based ocontextual HMMs.Contexts provide flex- left ¢;(¢) and righte,(¢) children of a node.*
ible conditional probability models for efficiently learning and ex; . .
pressing the dependenciesin wavelet transforms. Before we de\zlg Gaussian Mixture Models. The DWTs of many real-world
these new models, we sketch some background on wavelets, mist als tend to be sparse, with just a few non-zero coefficients con-

models. and wavelet-domain HMMs. taining most of the signal energy [2]. Hence, the marginal dehsity
' fw.(w;) of each wavelet coefficient is typically described by a
2. BACKGROUND peaky (atw; = 0) and heavy-tailed nonGaussian density.

Such densities are well approximated®gussian mixture mod-

2.1 The Wavelet Transform. The discrete wavelet transfornf!S[6l- To each wavelet coefficieri’;, we associate a discrete hid-
(DWT) represents a one-dimensional sign@) in terms of shifted den states; that takes on values = 1,..., M with pmf ps, (m).

versions c_)f a lowpass scaling functia¥{t) and shn‘ted_ and di- I For clarity, we will assume throughout this paper that the ledigttithe
lated versions of a prototype bandpass wavelet funatiof) [S]. signalis a power of two and furthermore that we take the maximum number
For special choices of the wavelet and scaling functions the at@iscales/ = log, I in the DWT. However, all results extend to signals of
arbitrary length, as well as to DWTs with fewer than the maximum possible
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Figure 3: Context-based models for the DWT. (a) To each wavelet
f coefficient-hidden state paifV;, S;), we augment a (square) context node
) o V. The context vector is a function of the other wavelet and scaling co-
Figure 2: Statistical models for the wavelet transform. We model each esfficients. (b) Example conteXf; formed using four wavelet coefficients
efficient as a Gaussian mixture with a hidden state variable. Each black nagighbouringV;.
represents a continuous wavelet coefficléit Each white node represents
the hidden mixture state variab¥e. Connecting the states vertically across

scale yields the Hidden Markov Tree (HMT) model. Removing these linkgypapilistics graphs [4, 8], but the analysis and training of more

yields the Independent Mixture (IM) model. complicated HMMs becomes extremely difficult [8]. For example,
graphs with links that form cycles cannot be modeled using transi-

Conditioned onS; = m, W; is Gaussian with meap; ,,, and vari- tion probabilities due to lack of a causal direction.

ances? ,,,. Thus, its overall pdf is given by

3. CONTEXT-BASED HIDDEN MARKQOV MODELS

M In this paper, we will useontextgo efficiently incorporate depen-
fwilwi) = Y psi(m) fiys, (wil S = m). (2) dencies into our HMMs. We define the context & as a length-
m=1 P vectorV,; = [V;1,Vi2,..., Vi p] formed as a function of the

o ) . ~wavelet or scaling coefficients (see Figure 3). We condifipron
To generate a realization W; using the mixture mOde', we flrstvl. to pred|cth The idea is foiV; to provide Supp|ementary in-
draw a state value; according taps, (si) and then draw an obserformation to the HMM, so that given the context, we can treat the
vationw; according tofyy,|s, (w:|S; = s:). wavelet coefficients as independent.

2.3 Hidden Markov Models. One simple approach to approxi- _BY conditioning (2) onV; (with the added assumption tht
mating the joint density'w (w) would treat the wavelet coefficient@nd?V: are independent givesi ), we have the context-based mix-
as independent Gaussian mixtures. The result — the Indepenttftmodelfor the wavelet coefficients:
Mixture (IM) model — has proven useful for signal estimation ap-
plications [6]. The primary motivation for this model lies in the fact
that the DWT acts as an approximate Karhunemstetransform for ~ Jwilv. (w[vi) = Z ps, v (m|vi) fws, (w]|Si =m).  (3)
a wide class of signals, and therefore the wavelet coefficients are m=1
approximately decorrelated. ) o o

However, the wavelet coefficients of real-world signals alfdthis case, the mixing probabilities depend on the value of the con-
not statistically independent in general. For instance, neighbor@ V:- If V. is highly correlated withV;, then (3) will provide a
wavelet coefficients are often highly dependent— large/small coefiich more accurate characterization of the distributioi/ofthan
cient values tend to propagate both within and across scales, creééhgn practice we do not specifys, jv, (m|v:) directly, but rather

M

clusters of large/small coefficients [3, 4]. specifypv, |s, (v|m) and apply Bayes rute

Wavelet-domain Hidden Markov mod¢lMMs) are multidi-
mensional mixture models in which the hidden states have a Markov ps,(m) pv,|s,(vi|m)
dependency structure. The idea is to capture the dependenciesinthe  Ps; v, (m|v:i) = —; —— . 4)
wavelet coefficients through their hidden states. For example, the 2 mer Psi(m) pvs, (vilm)

Hidden Markov Tree (HMT) model places a tree structure on the

hidden states to capture wavelet dependencies across scale (See Figefining e; .. = ps,(m) anda; v.m = pv,js,(vi|m), the

ure 2) [3,4]. The HMT model is specified via the mixture parameteentext-based HMM (CHMM) is parameterized by the ve&oe=

Hi.m, 07 m and transition probabilitieﬁsl|sp(l) (m|n). {WW OF s €isms oz,,v,m}. Given an observation of wavelet data
Before we process signals using a wavelet-domain HMM, we we estimaté® using the EM algorithm below. When only a sin-

first must train the model to capture the wavelet-domain propertigs signal observation is available, we make the standard assumption

of the signals of interest. That is, we determine the wavelet-donthiat the wavelet coefficients in each scale are identically distributed.

HMM parameters that best characterize our observed waveletMakiple signal observations, multiple wavelet trees, as well as mod-

efficients. This standard HMM training problem can be efficientys for the scaling coefficients, can be handled as in [4].

accomplished (in linear time per iteration) using the iterative Expec- .

tation Maximization (EM) algorithm [7}. EM Algorithm for CHMMs
Although the HMT model is powerful and relatively simple, iinitialize: Choose®° and setl = 0.

certain applications it is crucial to model more and different depen- . .

dencies lggtween the wavelet coefficients (such as across tim%%ctatlon (E): Given®’, calculate (Bayes rule)

across scale simultaneously). More sophisticated dependency struc-

tures for the hidden states can be formulated using the theory gfs o (mlvi, i) = €i,m Xivy,m fwls, (wilm)
i Vi, Wy ty e ) — M .

2 om=t G Qivim fwy s, (wilm)

3EM algorithm intuition: If the values of the stat&g were known, then
maximum-likelihood parameter estimation would be simple. Therefore, we, o
iterate between estimating the probabilities for the states (Expectation) andHere, we assume that the context is discrete-valued. We can model a
updating our model given the state prolitibs (Maximization). Under mild continuous-value®’; as an\/-component Gaussian mixture of its own, re-
conditions, this iteration converges to a local maximum of the likelinoBCINGPv |5, (vilm) in (4) with fy |5, (vi|m). We will find this useful
function. in Section 4.2.




Maximization (M): Compute the elements &7 +*
M) P Table 1: Denoising results for Donoho and Johnstone’s length-1024 test

signals [2]. Noise variancg?, = 1.

€im = Z Psivi,w (m|vi, wi),
kost. J(R)=J(0) Method Mean-squared error
1 Bumps | Blocks | Doppler | Heavisine
Pim = S5 X SureShrink [2]| 0.683 | 0.222 | 0.228 0.095
270 €i,m Bayesian[6] | 0.350 | 0.099 | 0.165 0.087
IM 0.335 | 0.105 | 0.170 0.080
Z w‘kpsklvkvwk(mm’wk)’ HMT 0.268 | 0.079 | 0.132 0.081
kst J(k)=J(0) Contextl | 0.252 | 0.101 | 0.141 0.081
2 1 Context 2 0.249 | 0.099 | 0.141 0.079
OCign = ——— X
) 2JU_J(1)617m

(6) and invert the DWT to obtain the denoised signal. (See [4] for
(wi — pim)” Ps,|v,,w, (m|vi, w), more details on a similar approach based on the HMT model.)

koot T = (i) What remains is to specify contexts that are simple, yet effective,

) for gleaning information on the hidden states. Two simple discrete

Qivm = ! Z ps,|v,,w, (m|vi, w;). contexts that exploit clustering of signal energy in the wavelet do-
€i,m main [4] illustrate our approach. Defigeas the quantized value of

hot SRS ve=ve the wavelet coefficiens;: Setq; = 1 if |w;|* is greater than the

average energy in its scale, otherwise,gget 0. The first context

contains quantized values of the neighboring wavelet coefficients
In contrast to the HMT E step [4], the CHMM E step is very 1)

straightforward. To ensure fastand robust training, we keep the num- V= [qp(,'), i)y r(i)» ey qcr(,)] ) (7)

ber of free parameters in each context vector to a minimum.

Iterate: Increment/ — 7 + 1. Apply E and M until converged.

and thus conveys gross information about the size of the neighboring
4. APPLICATIONS coefficients. Our intuition is that ito,;) andw,,, are large, then

. . there is a good chance that will be large as well. To encode such
To illustrate the flexibility of the CHMM framework, we now apply,sormation (“large” vs. “small’), even crudely quantized informa-
these models to two distinctly different problems: signal denmsmg . ici Th d text bi | &0t
and synthesis of long-range-dependent data network traffic. ~ tOn IS sufficient. The second context combines elements';

using logicalor operations ¥
4.1 Denoising. DWT methods have proved remarkably successful
for estimating signals corrupted by additive white Gaussian noise V£2) = [qp(i)7 qiiy Var(i), qcl(i)chr(i)] . (8)
(WGN) [2—4,6]. The superior results of HMT model denoising have )
demonstrated that significant performance gains can be achievefiijrther reduce complexity, we also assume that the context prob-
exploiting dependencies between wavelet coefficients [4]. Usingmiiities factor agv,|s, (vi|m) = HJP_l pv; ;15:(vijlm).

CHMM, we seek similar gains, but with reduced complexity. In Table 1, we provide the MSE results for denoising Donoho
Since the orthogonal DWT of zero-mean WGN is again zetghq Johnstone’s standard test signals [2] using CHMMs versus other
mean WGN of the same power, the signal estimation problem g@dte-of-the-art algorithms. Contexts 1 and 2 correspond to our pro-
be posed in the wavelet domain as: Estimate the wavelet cogffised algorithm using the contexts defined in (7) and (8), respec-
cientsy; of a signal given the noisy measuremeats= y; + n:, tyvely. Implementation details, such as the exact DWTs used, are
with {n;} a WGN process of variance.. As in [4], we adopt an provided in [4].
“empirical” Bayesian approach and model the signal wavelet coef- The key benchmarks for comparison are the IM and HMT mod-
ficientsY; using a two-component Gaussian mixtué & 2) with  els from [4]. IM denoising employs a mixture model that treats the
ti1 = pa2 = 0. signal wavelet coefficients as independent. Improvements over IM
If we knew the hidden stat8; of Y;, then the minimum-mean-signify the context’s ability to capture and exploit dependencies be-
squared-error (MMSE) estimate would be the conditional mean @gen coefficients. Overall, the MSE performance of the context-
timate of a Gaussian signal in Gaussian noise based approach is roughly comparable to the considerably more
complicated HMT denoiser of [4].

2
ElYi|wi, Si =m] = % w;. (5) 4.2 Signal Synthesis.Recent studies have shown that data network
Oim T On traffic is statistically self-similar and exhibits the long-range depen-

) - ) ) . dence characteristic of slowly-decaying correlation functions [9].
Given probability estimates for the hidden stateswe estimaté’s  These properties are difficult to model using classical traffic models
as the conditional mean involving Poisson or Markov processes. Complicating matters fur-

) ther is the fact that actual network inter-arrival times artla nonGaus-
sian, positive, and heavy-tailed [9]. Classical self-similar process

E[Yi|wi, vi] = ZPSzIwuvl(mmiv vi) E[Yi|wi, Si = m]. (6) modeg, such as fraction)r:\I BrowLig\n motion (fBm) can cath)ure the

m=1 long-range dependence of network traffic; however, fBm is a Gaus-
. . . . . sian process, and current methods for its synthesis are computation-
If Y, is a mixture of zero-mean Gaussians, thenis also a mixture o, intensive (up to0(L*) complexity for anL-point trace). New
of zero-mean Gaussians — the addition of zero-mean indepengetit ¢ analyzing and synthesizing very long traces of such data are

Gaussian noise increases the variance of each mixture COmpoNegBy ant for network design and control, since classical models can
o, but leaves the stat€; unaffected. Hence, we train our CHMMseyerely overestimate network performance.

on the the noisy wavelet dat’ to estimate the hidden state prob-  oyr goal is to develop a fast wavelet-based synthesis algorithm
abilities of the signabs, |, v, (m|w:, vi) and (by subtracting7,) consistent both with the long-range dependence and the positive,
the signal mixture variances ,,,. We then calculate the estimatesonGaussian marginal statistics of network traffic. Our approach



will be to first train a CHMM on an actual traffic trace, and then syn- Actual Synthesized
thesize artificial traffic with “equivalent” statistical properties. By
characterizing how the wavelet coefficient variances change W\“ e M J‘
scale, CHMMs can approximate the long-range dependence pro 4000 8000 0 4000 8000
erties of the data. By using the Haar scaling coefficients as conte:
CHMMs can capture the positive, nonGaussian marginal propert
of the traffic as we will show. 0 4000 8000 0 4000 8000
Using a Haar DWT [5], we will associate with eagh (w s, x

in the notation of Section 2.1) its corresponding scaling coeﬁiciew
u; (us,x In the notation of Section 2.1). Sinee corresponds to o 4000 8000 0 4000 8000

a local mean of the (positive) signal, we know that > 0, Vi. Figure 4:Network data traffic synthesis via CHMM. Inter-arrival times as a
Moreover, since for the Haar DWi., ;) = 2_1/2(u,' + w;) and function of packet group number plotted for (top) one, (middle) ten, and (bot-

Ue (i) = 212 (u; — w;), we must havéw,| < u;, Vi. tom) one-hundred packets. The actual traces consist of approximafely

. -packet arrivals, but only the inter-arrival times of the first groups of packets
Because of this clear dependence, we use the random vangﬁg%ﬁm s Y groups ot p

Vi = U; as the context for the random variaitl§. We modelU;
as a Gaussian mixture, with the parameférs., o7 ,,, updated in

the M step in a fashion similar to the updatesfQy., o7 .. Actual Synthesized

In essence, this procedure employs a mixture model to appr(hil | ‘ hi ‘
imate the 2-d density fofU;, ;) and then uses the 2-d density tc] 5o 0 553
obtain a conditional density fo#; based or/;. With enough mix- ' '
ture parameters, this approach in theory can approxi(iatdV;) LL ‘ . ‘
to arbitrary precision, hence automatically learning the constrair
U: > 0 and|W;| < U;. 0 0.12 0 0.12

In practice, to simplify our modeling, we map the cdig> 0,
|W:| < U; to the plane through the invertible map (U;, W;) — LL_J

0.7 0 0.7

(log(Us), —sgn(W:) log(1—|Wi|/Us)). By modelingg(Ui, Wi)  °

and then inverting to fornfU;, W;), we automatically enforce theFigure 5: Histograms of the inter-arrival times corresponding to the data

positivity constraints. To synthesiZ&; given U/;, we mapl; to ,’;’erqnd r’;’gg;eclfefgr groups of (top) one, (middle) ten, and (bottom) one-
log(U;), use it as a context to synthesize the transformed data, gen- '

erate a realization, and then invert the ngap producé/;.

To synthesize an entire wavelet transfovi, we work in “top- . . . .
down” fgshion starting from the root of the wavelet tree by synthe- 1he primary disadvantage of the CHMM framework is that it
sizing the single coarsest scale wavelet coefficient. (We assumiigS the feedback mechanism of more traditional HMMs that allow
context, the global mean of the signal, is already specified.) W€ model to propagate information from variables across the entire
erate down the tree using the fact that summing and differeriging™0del, hence capturing dependencies from more than just neighbor-
andW; provides the context information for synthesizitg, ) and N9 wavelet coefficients. However, in many instances, we expect the
W, (i)- convenience and efficiency of the context approach to outweigh this

As a test, we trained the CHMM synthesis algorithm on a portiBRtential limitation.
of the Bellcore Ethernet data (the firt® arrivals of the day-long
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