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ABSTRACT

In an effort to select a speech representation for our next genera-
tion concatenative text-to-speech synthesizer, the use of two can-
didates is investigated; TD-PSOLA and the Harmonic plus Noise
Model, HNM. A formal listening test has been conducted and
the two candidates have been rated regarding intelligibility, nat-
uralness and pleasantness. Ability for database compression and
computational load is also discussed. The results show that HNM
consistently outperforms TD-PSOLA in all the above features ex-
cept for computational load. HNM allows for high-quality speech
synthesis without smoothing problems at the segmental bound-
aries and without buzziness or other oddities observed with TD-
PSOLA.

1. INTRODUCTION

The goal of speech synthesis is to enable a machine to transmit
orally information to a user in a man machine communication con-
text [1]. However, in spite of the long history of speech synthe-
sis, no one speech synthesis system available today is able to pro-
duce speech that could be characterized as natural or completely
pleasant. In order to improve the speech quality of current text-
to-speech (TTS) systems in terms of naturalness, three areas must
be addressed [1]: 1) improved linguistic analyses, 2) improved
prosody modeling, and 3) improved speech synthesis models. While
all the above areas are equally important, this paper will investigate
only the third.

There has been a considerable amount of research effort di-
rected at the problem of speech representation for TTS. The advent
of Linear Prediction (LP) has had its impact in speech coding as
well as in speech synthesis [2]. However, the buzziness inherent in
LP degrades perceived voice quality. Other synthesis techniques
based on pitch synchronous waveform processing have been pro-
posed such as TD-PSOLA [3]. TD-PSOLA is currently one of the
most popular concatenation methods. Although TD-PSOLA pro-
vides good quality speech synthesis it has limitations which are
related to itsnon-parametricstructure; spectral mismatch at seg-
mental boundaries and tonal quality when prosodic modifications
are applied on the concatenated acoustic units. MBROLA [4] tries
to overcome the TD-PSOLA concatenation problems by resynthe-
sizing voiced parts with constant phase and constant pitch. This
artificial processing is the main source of MBROLA's problems,
like buzziness. Sinusoidal approaches have also been proposed for
speech synthesis [5], [6]. They perform concatenation by mak-
ing use of glottal closure instants a process which is not always

successful [5], resulting inpoor quality because of phase mis-
match at segment boundaries. Formal or informal listening tests
have been reported from many researchers in order to compare
the above speech representations for text-to-speech. In [6], pitch-
synchronous LPC was compared with a pitch-asynchronous sinu-
soidal model [7]. A preference for the sinusoidal model became
clear. In [4], LPC, TD-PSOLA, and a pitch-asynchronous hy-
brid harmonic/stochastic (H/S) representation were compared with
MBROLA. The conclusion was that MBROLA is comparable to
TD-PSOLA while the H/S representation comes third followed by
the LPC approach. Another test was carried out at CNET [8] com-
paring TD-PSOLA and another hybrid harmonic/stochastic (H/S)
representation. This H/S representation was a modified version
of the Harmonic plus Noise Model, HNM, proposed in [9] in the
sense that the model used to this experiment required pitch marks
to be locked at glottal closure instants. This was not a requirement
in [9]. The results showed that while the quality of the synthetic
speech produced by both systems was quite similar, the natural-
ness of the unvoiced sounds was noticeably better with the hybrid
model than with TD-PSOLA.

A speech model has been proposed [9],[10] based on a pitch-
synchronousHarmonic plus Noise (HNM) representation of speech.
HNM has shown the capability of providing high-quality prosodic
modifications [10] without buzziness and tonal quality encoun-
tered in previously reported methods. Recently, HNM has been
proposed for diphone concatenation [11] and informal listening
tests have shown that HNM-based synthetic speech is of high qual-
ity. Note that HNM does not require pitch marks unlike other
pitch-synchronous speech representations.

In order to select a speech representation for our next genera-
tion TTS, it was decided to compare TD-PSOLA, the most popular
to date concatenation method, with HNM. In this paper, we present
results from a formal listening test comparing TD-PSOLA versus
HNM. Small-scale TTS diphone inventories were recorded using
pre-selected professional speakers. Two type of inventories were
recorded for each speaker: a series of nonsense words and a series
of English sentences. Because only the speech representation was
under investigation, prosody from naturally spoken sentences was
used. Synthetic sentences were rated for intelligibility, naturalness
and pleasantness.

The first part of the paper is devoted to a brief description of
the two speech representations used in the formal listening: TD-
PSOLA and the extension of HNM to diphone concatenation. It
is followed by the description of the formal listening test. Results
and discussion are given in the third part of the paper.



2. TWO CANDIDATES FOR DIPHONE
CONCATENATION

2.1. TD-PSOLA

The Time Domain Pitch Synchronous OverLap Add method, TD-
PSOLA [3], relies on the speech production model described by
the sinusoidal framework [7]. However, the parameters of this
model are not estimated explicitly and for this reason TD-PSOLA
is also referred to as “null” model [4]. The “analysis” process con-
sists of extracting short-timeanalysis signalsby multiplying the
speech waveform by a sequence of time-translated analysis win-
dows. The analysis windows are located around glottal closure
instants and their length is proportional to the local pitch period.
During unvoiced frames the analysis time instants are set at a con-
stant rate. During the “synthesis” process a mapping between the
synthesis time instants and analysis time instants is determined ac-
cording to the desired prosodic modifications [3]. This process
specifies which of the short-time analysis signals will be elimi-
nated or duplicated in order to form the final synthetic signal.

2.2. HNM

HNM is based on a pitch-synchronous harmonic plus noise repre-
sentation of the speech signal [10]. The spectrum is divided into
two bands; the low band is represented solely by harmonically re-
lated sinewaves with slowly varying amplitudes and frequencies
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and phase at timet of the k-th harmonic,!0(t) is the fundamental
frequency andK(t) is the time-varying number of harmonics in-
cluded in the harmonic part.
The frequency content of the high band is modeled by a time-
varying AR model;its time-domain structure is represented by a
piecewise linear energy-envelope function. The noise part,n(t),
is therefore assumed to have been obtained by filtering a white
Gaussian noiseb(t) by a time-varying, normalized all-pole filter
h(�; t) and multiplying the result by an energy envelope function
w(t):

n(t) = w(t) [h(�; t) ? b(t)] (2)

A time-varying parameter refered to asmaximum voiced frequency
determines the limit between the two bands. During unvoiced
frames the maximum voiced frequency is set to zero.
The first step of the HNM analysis consists of estimating pitch and
maximum voiced frequency based on a time-domain pitch detec-
tor [12]. Then, harmonic amplitudes and phases are estimated by
minimizing a weighted time-domain least-squares criterion. For
the noise part, the spectral density function of the speech signal is
modeled by an all-pole filter by use of a standard correlation-based
method [13]. The variance of the speech signal is estimated as the
gain of this filter. The analysis windows are set at a pitch-synchro-
nous rate during the voiced portions of speech and at a constant
rate during the unvoiced frames. Note that HNMdoes not use
pitch marks locked on glottal closure instants in contrast to TD-
PSOLA; however, the distance between two analysis time instants
is one local pitch period and the analysis window is two local pitch
periods long.

The second step of the HNM analysis consists of estimating a con-
tinuous spectral and phase envelope per voiced frame. The spectral
envelope is estimated from the harmonic amplitudes by a discrete
regularized cepstrum technique described in [14] using a warped
frequency scale (Bark scale) [10]. The phase envelope is obtained
by the phase unwrapping algorithm described in [10], under the
constrain of a smooth “phase slope”. Thus, an HNM voiced frame
is fully described by its fundamental frequency, the number of har-
monics, the discrete cepstrum coefficients, the phase envelope, the
reflection coefficients of the AR filter and the gain of this filter (LP
gain). An HNM unvoiced frame is only represented by the AR
filter and its gain.

At synthesis time, HNM frames are concatenated and the pro-
sody of units is altered according to the desired prosody. Thanks
to the pitch-synchronous scheme of HNM, a simple technique as-
sociates synthesis time instants with analysis time instants [10].
After the determination of synthesis instants, harmonic amplitudes
and harmonic phases are retrieved by sampling the spectral and
phase envelope respectively, at the harmonic frequencies of the
target fundamental frequency. Then, HNM parameters have to
be smoothed around diphone boundaries. The number of frames
used in the smoothing process depends on the variance of the num-
ber of harmonics for voiced frames and on the variance of the LP
gain for unvoiced frames. The phoneme boundaries inside each
diphone define the maximum number of frames for smoothing. Fi-
nally, there is no smoothing at the boundary between unvoiced and
voiced frames. Spectral amplitudes, LP gain and reflection co-
efficients are smoothed around concatenation points by a simple
linear interpolation procedure. Phase smoothing is not so straight-
forward. First the phase offset is estimated between a diphone (left
diphone) and its successor (right diphone) based on the cross cor-
relation of two sinusoids which have the same amplitude and same
frequency while having different phases�l and�r , where�l is the
phase of the first harmonic in the last frame of the left diphone and
�r is the phase of the first harmonic in the first frame of the right
diphone. Next a phase difference is calculated and a weighted ver-
sion of that difference is propagated towards only the following
diphone, until the next boundary (last frame of the following di-
phone).

3. QUALITY ASSESSMENT

For the purpose of the formal listening test, six professional fe-
male voices were recorded at a16kHz sampling rate. Two types of
diphone inventories were recorded for comparison: 1) a series of
nonsense words which contained the diphones required to synthe-
size the test materials and 2) a series of English sentences which
also contained the required diphones. The phonetic segmentation
and alignment of both inventories was first performed automati-
cally with Entropics Aligner software, whose output was subse-
quently verified and hand-corrected if obvious inaccuracies affect-
ing target segments were found. A relatively minimal set of phones
was used for speaker audition purposes.

The two synthesis techniques that were used to generate the
TTS test materials were: 1) TD-PSOLA as it was implemented at
AT&T Labs-Research and 2) a research implementation of HNM
as it was presented in the previous section. Both methods used the
same input and prosody, which was modeled on naturally spoken
tokens of the test sentences recorded from each speaker. Table 1
shows the mean fundamental frequencies of the speakers and their
standard deviations.



Speaker Mean F0 (Hz) S.D. F0 (Hz)
1 214 55
2 150 38
3 196 60
4 217 46
5 188 46
6 231 56

Table 1: Prosody characteristics of the speakers.

Three sentences were included in the test:

Two boy scouts stood watch outside.
I'm waiting for my pear tree to bear fruit.
We must complete every task.

All test sentences were equated for level.
Naturally spoken versions of the three test sentences were sub-

jected to one of twomodulated noise reference unitMNRU refer-
ence conditions, Q10 and Q35. Q10 served as a low-end refer-
ence point with MOS scores similar to those previously found for
a low-end commercial 16kbps ADPCM encoded voice mail sys-
tem. Q35 served as a high-end reference whose MOS scores are
typically equivalent to very high quality telephone speech.

Speech samples were presented in two different modes: 1) in
the wide bandwidth condition, speech signals were low-pass fil-
tered by a brickwall filter set to6:5 kHz and presented to listen-
ers via headphones (ITU specifications) and 2) in the telephone
bandwidth condition, speech signals were filtered for a nominal
telephone bandwidth form300 Hz to 3300 Hz and presented to
listeners via AT&T Trad100 telephone receivers.
Independent subjective ratings of each test sentence for intelligi-
bility, naturalness and pleasantness were made. Foreach test trial,
listeners were presented a 5-point (MOS like) rating scale from
which to select their judgments using a touch sensitive screen. For
each of the three types of ratings a familiarization session preceded
testing during which listeners were presented speech samples rep-
resenting the full range of variation along the dimension being
rated, and they were given practice in using the rating scale.
Listeners were41 adults who were inexperienced in listening to or
evaluating text-to-speech synthesis. The group was composed of
7 males and34 females. No listeners reported any known hearing
impairments. Listeners were tested in four groups of from8 to 11
individuals.

For one half of each test session, speech signals were pre-
sented over headphones (wide bandwidth), and for the other half,
they were presented through the telephone handsets (telephone
bandwidth). The order of the two bandwidths was counterbalanced
across the four test sessions, so that wide bandwidth was presented
first for two groups, and telephone bandwidth was presented first
for the other two. For each bandwidth, the three types of ratings
(intelligibility, naturalness, and pleasantness) were blocked; that
is, all the speech signals were presented for intelligibility ratings
during one interval of time, naturalness ratings for all the signals
were collected during another time interval, and pleasantness rat-
ings during a third interval. Blocking of type of rating was done
to avoid subjects' confusion over what quality they were rating in
a given trial. The order of the rating types and of the speech sig-
nals within a rating block were randomized. The counterbalancing
and randomization of the order of test items among test blocks and
across groups was intended to control possible order effects in the

test, such as learning or fatigue effects, by evenly distributing them
among test items.

A total of 936 ratings were collected from each of41 listen-
ers, totaling38; 376 observations for the entire experiment. Re-
peated measures Analyses of Variance (ANOVAs) were perform-
ed on the data. There were significant main effects of speaker,
synthesis method, and inventory, plus interactions.

Figure 1 compares mean ratings among Q35 (plus-mark), Q10
(star-mark), HNM (circle-mark) and TD-PSOLA (x-mark).
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Figure 1: Average of all ratings (Intelligibility, Naturalness, Pleas-
antness) per speaker for Q35(+), Q10(*), HNM(o), and TD-
PSOLA(x).

In more details, for Q35 (high-quality natural speech), Natu-
ralness and Intelligibility ratings were equivalent, and they were
significantly higher than Pleasantness ratings.
Lower-quality natural speech (Q10) had the following ordering:
Naturalness> Intelligibility > Pleasantness. Synthetic sentences
were rated higher for Intelligibility than for Naturalness or Pleas-
antness, which were equivalent.
HNM was consistently rated about0:25 points higher than TD-
PSOLA in Intelligibility, Naturalness and Pleasantness. Finally,
the type of inventory from nonsense words versus from sentences
has a smaller difference for HNM (0:10) than for TD-PSOLA
(0:19).
It is worth noting that the diphone inventories were prepared twice
because TD-PSOLA had serious quality problems with the first
instance of the database. However, the quality of the HNM-based
synthetic speech signals practically were equivalent for both data-
bases.

4. DISCUSSION AND CONCLUSIONS

Results from the formal listening test show that HNM is a very
good candidate for our next generation TTS. The score for HNM
is consistenly higher than for TD-PSOLA in intelligibility, natural-
ness and pleasantness. The segment quality of synthetic speech is
high, without smoothing problems and without buzziness observed
with TD-PSOLA. An important point is that HNM is a pitch-syn-
chronous system which does not require glottal closure instants as
is the case with TD-PSOLA.

Other differences between TD-PSOLA and HNM (which basi-
cally justify the results form the formal listening test) are discussed



below.
TD-PSOLA was, so far, used for the low-cost high-quality

prosodic modifications that this system can provide. However,
TD-PSOLA eliminates/duplicates short-time waveforms extracted
from the original speech signal by windowing. Although this pro-
cess is very simple and the computational load is very low, this ap-
proach introduces a tonal noise quality because of the repetition of
segments; an artificial long-time autocorrelation term in the output
signal, perceived as some sort of periodicity (the problem is more
noticeable during unvoiced frames and fricative voiced frames, of
course).
Because of the non-parametric scheme of TD-PSOLA, limited smo-
othing possibilities are offered. This is an important issue in con-
catenative speech synthesis. Also, because its non-parametric sche-
me, TD-PSOLA does not allow complex modifications of the speech
signal, such as increasing the degree of friction, or changing the
amplitudes and phase relationships between pitch harmonics.
Comparing TD-PSOLA and HNM regarding computational cost,
it is clear that HNM has a much higher complexity than TD-PSOLA.
Actually, this is the only drawback of HNM versus TD-PSOLA.
However, the HNM implementation presented in this paper is run-
ning in real time on an SGI Indy machine. Expecting the machine
power to increase in the future, HNM complexity will not be at all
a problem.
HNM, in contrast with TD-PSOLA, is a full-parametric pitch-syn-
chronous harmonic plus noise representation of the speech signal.
More explicitly, this means:

1. Smoothing diphone (or any other kind of units) boundaries
is a simple and flexible procedure.

2. Prosodic modifications are quite straightforward and of high-
quality [10].

3. Different prosody and spectral envelope modification meth-
ods can be applied to the harmonic and the noise part, yield-
ing more natural-sounding synthetic speech.

4. Compression of a speech database. Preliminary results have
shown that a bit rate of less than6 kb/s is possible for wide-
band speech coding based on HNM.

5. HNM has also been tested on a voice conversion task [15]
with very promising results. The possibility of voice con-
version is important in TTS systems as a mean to create the
desired variety of voices while avoiding recording a multi-
tude speakers.
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