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ABSTRACT

This paper presents a review of the Principal Component Inverse
method of rapidly adaptive signal detection and contrasts the use of
Pricipal Components with the more recent Cross Spectral Metric
method for the Generalized Sidelobe Canceller. The CSM method
is optimal with known statistics and has been shown to outperfrom
the PCI method in many cases of unknown covariance. This pa-
per describes a scenario which represents a class of covariances
where the PCI method can be expected to outperform the CSM
method. The choice of method is therefore more subtle than pre-
viously thought.

1. INTRODUCTION

Principal Component Inverse (PCI) [10, 15, 14, 6, 7] is a method
for estimating and removing an undesired interference which, over
a short period of time, can be well approximated by a set of a
few locally constant basis vectors. The method is an improve-
ment on Sample Matrix Inverse (SMI) [9] in the case of low rank
interference and when implemented in the context of a General-
ized Sidelobe Canceller has similarities to the recently introduced
Cross Spectral Metric (CSM) [3, 4] approach; However, there are
performance differences which warrant investigation.

1.1. Known Statistics

When the signal is known except for a random phase embedded
in noise which has a multivariate Gaussian probability distribution
with zero mean vector and covariance matrixR, then the optimum
test statistic be viewed as the magnitude of the output of a noise
whitening matched filter [1] By decomposing the covariance as
an interference component plus a white noise component,R =
Q + �2I, Claus et al. [2] showed that the optimum test statistic
can be re-written using a weighted projection matrixP
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By rewriting formula 1 we have an alternative formula for the

test statistic [8]
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whereB is aN � (N � 1) matrix orthogonal to the vectorS. De-
notingd as the signal based coordinate value andZ as the vector
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Figure 1: Generalized Sidelobe Canceller Structure

of coordinate values in the orthogonal space, the optimum weight
vector isWGSLC = R�1

Z rdZ [8]. This structure is commonly ref-
fered to as a Generalized Sidelobe Canceller (GSLC) and is shown
in Figure 1.

1.1.1. Estimation of Interference for a Given Rank

Suppose in the case of known covariance one wishes to design an
optimal processor for which the weight vector is constrained to
be in anM dimensional subspace based on the eigenvectors of
the covariance matrixRZ . It has been shown by Goldstein and
Reed [3, 4] that the optimal solution is to form the GSLC weight
vector

ŴGSLC = ÛM�̂
�1
M Û

H
M r̂dZ (3)

whereÛM and�̂M are constructed from theM eigenvectors and
eigenvalues chosen from theM largest values of the set

juHj rdZ j
2

�j
for j = 1 � � �N � 1 (4)

which is called the Cross Spectral Metric (CSM).

1.2. Adaptive Detectors

Several different adaptive detectors can be formulated by estimat-
ing the parameters in the above versions of the optimal hypothesis
test statistic. The noise covariance matrixR is now assumed to
be unknown and multiple statistically independent observations of
the data vector are available.
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1.2.1. Principal Component Inverse (PCI)

The name Principal Component Inverse (PCI) was chosen to em-
phasize the connection with the earlier Sample Matrix Inverse (SMI)
method. PCI is a modification of SMI which can provide a more
sufficient degree of adaptation with less observed data. This is
achieved by using the commonly occurring a priori knowledge that
during the observation interval, the noise vectorsV (k), over some
adaptation interval of values ofk, are composed of a strong com-
ponent,C(k) and a background component where the strong com-
ponent is well represented by a set of basis vectors which do not
change over the adaptation interval,C(k) =

PM

i=1
�i(k)Qi.

Starting with the form of the test statistic of formula 1, the
Principal Component Inverse approach is to replaceP in formula
1 by P̂ =

PM

k=1
Q̂kQ̂

H
k in which Q̂k is the estimatedkth eigen-

vector of the data matrix of vector samples
Y =

�
X1 X2 � � � XK

�
. M is the estimated rank of the

strong interference and the interference is much stronger then the
background white noise, thus�k � �2 for 1 � k �M and�k �
0 for k > M and so �k

�k+�
2 � 1 The PCI test statistic is then given

by
1

�2
jSH(X � P̂X)j (5)

If one defines the normalized SNR,�, as the ratio of the SNR
with the adaptive weight vector to the SNR of the optimal known
covariance weight vector, then for the SMI method,� was shown
to have a Beta distribution dependent uponN , whereN is the
number of component of the data vectorX andK which is the
number of statistically independent vectors used in the estimate
of R̂. Under the assumption that the interference is strong the PCI
weight vector is approximately the SMI estimate for the problem in
the reduced rank space [6] and thus the SNR has a Beta distribution
whereN is replaced byM+1. The result is that PCI can provide a
higher probability than SMI for obtaining a sufficiently high value
of SNR for a given sample size as shown in Figure 2.

When the interferers are strongly low rank, the rank selection
for PCI can be straightforward as there will be a noticeably sharp
difference between two eigenvalues. However, in many practical
cases the singular values may simply fall off rapidly (only approx-
imately low rank) making the choice of rank more difficult. The
method used is based on two principles which are used to set a
threshold.

� Under conditions of no strong interference, waveforms
should pass through PCI processing unchanged

� Threshold should allow max expected signal and low level
interference to pass through PCI processing unchanged

The rank is then determined by finding the minimumr for whichPr

k=0
�2N�k > T where�k is the kth singular value of the

sample data matrix, with�1 � �2 � � � � � �N . The rank is
then chosen asM = N � rmin whereN is the dimension of
the data vector andT is the chosen threshold setting. In cases
of strong interference the threshold,T , can be set using knowl-
edge of maximum expected signal strength and the fact that the
distribution of 2

�2

Pr

k=0
�2N�k without signal is approximately

�22(N�r)(K�r) [11, 16].
The first principle for setting the threshold ensures that the

processor will become a matched filter in the absence of interfer-
ence. The second principle ensures that the threshold will be set
high enough that the signal will not be modeled for the interfer-
ence removal. This is necessary in many systems, as one can not
always guarantee that training data is signal free or one may wish
to train and detect on the same data interval.

In the present scenario the columns of the matrix are indepen-
dent; however, in may cases such as time series signal estimation
or space-time processing, the matrix formed may have a predefined
structure such as Toeplitz or Hankel. Utilizing these structures in
the PCI algorithm can improve the estimation performance. The
reader is referred to [10, 15] for a treatment of these cases.

1.3. Adaptive CSM and Signal Based PCI

The methods of CSM and PCI offer two ways of providing an
adaptive processor in the signal based coordinates of formula 2.
Given a set of datad =

�
d1 d2 � � � dk

�
and
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form the weight vector by using

R̂Z = 1
K
ZZH r̂dZ = 1

K
ZdH (6)

and forming the weight vector as

ŴGSLC = ÛM�̂
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H
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However, the Adaptive CSM uses the estimated cross spectral met-
ric to choose the eigenvectors, whereas, Signal Based PCI uses
only the estimated eigenvalues [6]. Also, CSM is formulated for
a prescribed rank and general covariance, while PCI estimates the
rank from data over the adaptation interval and assumes that the
covariance is from a low rank process.

CSM is the optimal choice in case of known covariance [4]
and the optimal choice with respect to mean squared error when
the problem is treated as a least squares data problem (estimation
and application of the weight vector is done on the same data) [3].
CSM has also been experimentally shown to provide better results
for lower ranks using the Mountaintop data set [5]. These results
may suggest that CSM outperforms PCI in all cases, however, the
following scenario represents a large class of covariance structures
for which Signal Based PCI can outperform CSM. In particular,
let us confine our attention to the case where the interference is a
strong low rank process and thus we can speak of a correct rank.
Finite sample performance of these methods will depend upon the
stability of the estimates being used for the rank selection criteria
in addition to the true values of the values being estimated.



1.3.1. Subspace Swap

We now describe the concept called a subspace swap [13, 12]
which is an important concept in understanding the performance
of the PCI approach. In the case where we have the notion of a
correct rank, divide the singular vectors of the covariance matrix
into signal and orthogonal singular vectors

U =
�
Us j Uo

�
(8)

=
�
U1 � � � Ur j Ur+1 � � � UN

�
(9)

whereUk corresponds to thekth largest true singular value. For
a given realization of the data matrix,Z, one expects the energy
to be greater in the direction of the singular vectors of the signal
subspace than any linear combination of the orthogonal subspace.
That is,
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H
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H
U
H
o ZjjF for i = 1 � � � r (10)

However, it can happen that a linear combination of the singular
vectors in the orthogonal space resolves more energy than a singu-
lar vector in the signal space. This is called a subspace swap and
is associated with a rapid degradation in the performance of SVD
based algorithms.

To facilitate the finite sample comparison of PCI and CSM,
we introduce the analogous concept of a CSM swap. Let the sin-
gular vectors in equation 9 be such thatUk corresponds to thekth

largest true cross spectral metric. A CSM swap will occur when
the output ofUHi Z for i = 1 � � � r makes a larger angle withd than
for a linear combination ofi = r + 1 � � �N . That is, due to the
finite sample size, data from a channel that should have low or no
correlation withd, appears to have a higher correlation than data
from a channel that shoulod be highly correlated withd.

In the case of strong low rank interference, the CSM and PCI
methods with known statistics will choose the identical set of sin-
gular vectors. However, the use of different methods for adaptively
choosing the singular vectors may have different probabilities of a
swap. And so, although on most realizations of the training data,
the chosen singular vectors and thus the performance will be iden-
tical, there will exist realizations where the two methods may differ
considerably. Let us construct an example where the estimates of
the CSM values will be less stable than the estimates of the eigen-
values and thus the chance of a CSM swap will be greater than a
swap with the PCI method. One way to do this is to place some
of the jammers in the nulls of the nominal beampattern thus giv-
ing them small true cross covariance values. One example of this
type of scenario was that used by Goldstein and Reed [3] except
we now consider the case of independent training and application
data whereas, they considered the problem in terms of minimum
mean square error where the training and application data were the
same.

1.3.2. Independent Training and Test Data

The following case is constructed such that the probability of a
PCI swap and rank selection error is negligible, which is to say
that the jammer power is large compared to the background noise.
Assume the data used to calculate the weight vector (training data)
is signal free and independent of the data which will be used for
signal detection. With this independence, the mean square error
performance is inversely proportional to the SNR. A spatial only
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Figure 3: Jammer Angles and Powers for Simulated Scenario
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Figure 4: Normalized SNR Realizations with Rank = 5

scenario using a16 element linear array with five interferers at an-
gles

�
�61 �30 �10 10 22

�
degrees and power levels�

40 44 34 38 40
�

dB was simulated as shown in Fig-
ure 3. The desired signal was assumed to be broadside and16
signal free samples were used for the adaptive weight calculation.
Note that three of the jamming angles are near the nulls of the nom-
inal beampattern. For each weight vector calculated, a theoretical
normalized SNR was computed. This was done for10000 trials.
Figure 4 shows the results for the case when the choice of rank is5
which corresponds to the true number of interferers. The majority
of the time the two methods have identical normalized SNR and
thus have chosen the same eigenvectors. However, occasionally
the CSM makes a different choice which results in performance
difference between the two methods.

There were a total of109 (about 1%) realizations where CSM
chose an eigenvector that was not closest to the theoretical best.
These occurences were fairly evenly distributed among the three
eigenvectors related to the interference in the nulls of the nominal
beampattern. As shown in the Figure, the vast majority of these
occurences are associated with poorer performance. There were
no cases using the PCI method.

In the three samples where CSM outperformed PCI, the vec-
tors chosen by PCI did span the interference subspace very well.
With high probability this will yield good cross covariance esti-
mates for these coordinates and thus good performance. However,
with low probability there will be poor cross covariance estimates
and simultaneously be a cross covariance estimate among eigen-
vectors that were not chosen that is good enough to compensate
for the difference in the levels of interference between them. Thus
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Figure 5: CSM and PCI Performance as a Function of Rank

it would have been better on this realization to choose an eigen-
vector that was not closest to the true interference subspace. In
order for CSM to choose this eigenvector the magnitude of the
poorly estimated cross covariance must be estimated low rather
than high. Thus, the condition for this event to occur is that the
estimated cross covariance for an eignevector with a high level of
interference in the training data is estimated extremely low while
a cross covariance of a low interference eigenvector is accurately
estimated.

In Figure 5 we now look at the performance as a function of
rank for the case of a fixed training size of16 samples. As ex-
pected, the performance of the PCI method is poor until a rank
5 processor is used but notice that for ranks3 and 4, the CSM
method is also well below the rank5 value due to swapping among
the five largest CSM values. In the rank three case, there were
3813 times that CSM chose a singular vector that was not closest to
the two best CSM singular vectors of the known covariance case.
Also, from Figure5, the CSM method falls off much more quickly
for ranks above the true rank. The singular vectors corresponding
to singular values after the first five are essentially associated with
white noise and will be very unstable within the noise subspace.
Therefore using them in the processor will not improve interfer-
ence cancellation. PCI simply selects the vector corresponding
to the next largest eigenvalue. This selection will have the least
impact on the conditioning of the inverse of the estimated covari-
ance matrix. The CSM values above number five will have a large
degree of variability since the true values are zero, and so, CSM
is almost as likely to choose any of the remaining eigenvectors.
When CSM chooses an eigenvector associated with a small eigen-
value, a poorly conditioned matrix will result with large weight
vector errors. Note that as the rank of the processor is increased
the difference between PCI and CSM becomes less since the num-
ber and magnitude of singular values on which they can possibly
differ becomes smaller.

In this scenario we examined independent training and test
data in which case one can often assume that the training data is
signal free. However, in the same data case one must consider
the effect of signal presence on the interference suppression al-
gorithm. The effects of signal presence on SNR using CSM and
Signal Based PCI is a topic for future work.

2. CONCLUSIONS

PCI and CSM give two methods of rank selection for the case of
the GSLC. CSM has been shown to provide better performance

than PCI in several important cases. However, PCI can provide
better performance in the case of strong low rank interference due
to a lower chance of a PCI swap. This perfromance difference is
emphasized for small training data sets where the estimates used
by the PCI and CSM methods are poor.
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