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ABSTRACT
We consider the possibility of incorporating distinctive features
into a statistically based speech recognizer. We develop a two
pass strategy for recognition with a standard HMM based first pass
followed by a second pass that performs an alternative analysis to
extract class-specific features. For the voiced/voiceless distinction
on stops for an alphabet recognition task, we show that a lin-
guistically motivated acoustic feature exists (the VOT), provides
superior separability to standard spectral measures, and can be au-
tomatically extracted from the signal to reduce error rates by 48.7
% over state of the art HMM systems.

1. INTRODUCTION

There is little doubt that currently the most successfulparadigm for
speech recognition is a statistical approach typically using variants
of an HMM framework [12]. While this approach has led to
significant advances, some problems still remain. In this paper we
investigate the possibility of using linguistically motivated features
to correct some of the errors of current HMM based recognizers.

The notion of distinctive features [6] has long been regarded as
a possible basis for automatic speech recognition. Unfortunately,
few systems basedon such principles have truly been implemented.
Additionally, speech recognition research in this tradition has typ-
ically been conducted with hand-crafted rule-based approaches
with relatively little statistical content to smooth over the inherent
variability of the speech signal. At the same time, work in the
mainstream statistical (primarily HMM based) approaches typi-
cally use a spectral sequence as features and ignore the possibility
of linguistically motivated features. In our view, maximal benefits
will emerge from a healthy union of statistical learning techniques
with such feature systems. Our overall goal is to move towards
such a feature based system. To demonstrate the feasibility of such
a feature based approach, one will have to show that at least for
one particular feature, a viable implementation exists. Specifically,
one needs to ask the following questions: What are the acoustic
correlates of a particular distinctive feature? Do such acoustic
correlates provide better separability than traditional spectral fea-
tures (or transformations there-of like cepstra etc.)? Can such
correlates be reliably extracted in an automatic speech recognition
system? This paper provides some answers to these questions on
a limited task, i.e., alphabet recognition. As a starting point we
examine the feature [voice] on stop consonants. As we shall see
from an error analysis later, several of the errors in alphabet recog-
nition occur due to a misclassification of this feature. To place
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our results in an appropriate context, it is worthwhile to emphasize
some aspects of the work presented in this paper:
1. This paper should be viewed as a demonstration that at least for
one particular case, i.e., the voiced/unvoiced distinction for stops
in spoken letters, a linguistically motivated and perceptually real
acoustical feature exists, can be automatically extracted and used
for recognition leading to performance that is superior to state-of-
the-art HMM systems. Very few such demonstrations exist. For
example, the stop-recognition experiments conducted by Fanty
and Cole (1990), Lamel (1988) Hasegawa-Johnson (1996) and
Djezzar and Haton (1995) suggest that linguistic features provide
reasonable performance but they have not been compared to state
of the art HMM based systems (though Djezzar and Haton do show
improvement of acoustic-phonetic features over cepstral features
in a Neural Net setting). Furthermore, often the results have been
presented on handsegmented speech. The same is true of the
applications of feature based approaches to other sound classes
([11],[2]). (One notable exception, perhaps, are the promising
results in Bitar and Espy-Wilson (1995)). At a time when many
researchers are pessimistic about the future of acoustic-phonetic
approaches, it is important to stress some of the positive results —
the promising results on the voicing feature described in this paper
suggests that it is worthwhile to investigate further the kinds of
ideas discussed in Stevens (1995) and Zue (1985) where accounts
of acoustical correlates of other phonetic distinctions have been
presented.
2. We propose a two pass strategy for recognition. While the
general idea of two pass strategies has been employed before in a
number of different contexts, the details differ from system to sys-
tem. In our case, we use a standard HMM based system as a first
pass to obtain an initial tentative segmentation and classification of
the speech signal. In the second pass, we employ a completely dif-
ferent analysis system that uses heterogeneous, acoustic-phonetic
features to alter the segmentation and classification in a completely
automatic manner. Since perceptual cues for recognition are pre-
sumably distributed in a non-uniform manner in the time-frequency
plane, the second analysis system is crucial for improved and more
biologically plausible recognition. The second pass recognizer is
also statistically based: it builds probabilistic models on the new
heterogeneous features.
3. We perform an analysis of the errors on a restricted alphabet
task using a state of the art HMM system. We focus in particular
on errors related to stops (“P”,“T”,“B”,“D”,“K”) and their confu-
sions. These are highly confusable sounds and require one to make
fine phonetic distinctions that a human seems to make fairly easily
while current recognition systems don’t. We propose that the Voice
Onset Time (VOT), an acoustically distinct and perceptually real



quantity, can be used as a criterion for discriminating the voiced
from unvoiced stops (in pre-stressed, syllable initial position). This
is a primarily temporal cue that is poorly modeled by current recog-
nition systems. Most significantly, whenever the first pass HMM
system classifies a segment as a stop, we invoke the second pass,
automatically extract an estimate of the VOT and reclassify. Most
statistical classifiers that depend on spectral distinguishability of
the sound classes perform poorly on tasks such as that considered
in this paper where the acoustic correlate seems to be primarily a
temporal one.
4. It has been recognized in the past through the work of Lisker
(1964), Klatt (1975) and others that the durational cue of Voice
Onset Time provides good separation and is psychologically real.
However, they have not addressed the issue of how such a measure
can be automatically extracted from the signal; nor whether it
provides superior separability to standard spectral measures. In the
HMM tradition, VOT has not been considered as far as we know.
In the acoustic-phonetic tradition, some recognition results exist
using the VOT; mostly from hand-segmented speech; no account
exists of how they compare with the performance of current HMM
systems.

2. ERROR ANALYSES ON ALBHABET RECOGNITION

We considered a sub-problem of alphabet recognition on a database
of spelled New Jersey town names spoken by 100 speakers (50
utterances each; 5000 utterances in all) and collected over the tele-
phone. We concentrated in particular on voiced/voice-less minimal
pair distinctions that need to be made for such alphabetical tasks.

2.1. Experience with Standard HMM Systems

We ran several variants of the standard HMM based recognizer
(three state, left to right models) that have been trained on subword
sequences with a front-end representation consisting of energy
and cepstral coefficients and their first and second time deriva-
tives. The basic cepstral representation was computed every 10 ms
using a 30 ms window. The overall performance on the New Jer-
sey townname alphabet set with a free grammar is a word (for
the alphabet task, a word is the same as a letter) accuracy of
59.1%. The stops were the most confused words and accura-
cies were very low. Specifically, for the NJ townname alphabet
task, some of the relevant letter accuracy rates are “T”(59.8%),
“D”(54.8%),”B”(44.62%),”P”(66.67%).

These errors are seen to persist for most variants, e.g., when the
subword models are changed from single phones to diphones with
right context, or when duration models are used. It has been found
from an analysis of confusion pairs, that the voicing dimension
provides a high source of confusion for stops. Curiously, many
more voiced stops are misclassified as unvoiced stops rather than
the other way around. Table 1 shows the recognition scores for
stops along with the number of confusions made along the voicing
dimension for each stop. The results indicated are for the first
pass system — a three state, left-to-right, subword based, HMM
classifier. A large number of “A”’s were misrecognized as a stop
(“K”); hence the inclusion of “A” results in the analysis.

2.2. Temporal versus Spectral Cues for Discrimination: the
VOT

Why are the stop recognition scores so poor? For the task at hand,
there are two primary factors. First, the traditional representation

Alphabet # Tokens Corr. Sub. Confusion
61.6 % 30.5 % 1.5 %

T 2893 1782 884 (T -> D) 42
55.8 % 34.2 % 16.6 %

D 1804 1006 617 (D -> T) 304
68.8 % 24.6 % 1.3 %

P 1104 759 272 (P -> B) 14
44.8 % 46.4 % 14.9 %

B 1163 521 540 (B -> P) 173
82.3 % 11.7 % 0.2 %

K 1244 1024 145 (K -> A) 2
35.6 % 36.4 % 19.5 %

A 4361 1554 1590 (A -> K) 850

Table 1: Summary of relevant letter accuracies. The second col-
umn gives the total number of tokens for each letter in the database.
The third column gives the number (and percentage) correctly rec-
ognized. The fourth column gives the number (and percentage)
of that token that was substituted by some other in the recogni-
tion process. The remaining (column 2 - (column 3 + column 4))
provide the number of tokens deleted altogether. The number of
tokens that were confused with voiced/unvoiced minimal pair is
indicated in the fifth column. Note that the overall accuracy scores
are computed after taking into account the number of incorrect
insertions (not provided in this table) for each letter.

uses a 30 ms. analysis window moved every 10 ms. This is
often too coarse to capture reliably the effects of a short duration,
transient stop burst — typical voiced bursts are of the order of 5-10
ms. Second, even if the burst is captured reliably, a standard HMM
system uses a purely spectral representation to classify sounds.
In the case of the voiced/unvoiced distinction for letters, this is
often unreliable. In this section, we provide some evidence that a
temporal measure (specifically the Voice Onset Time) provides a
greater degree of separation than purely spectral measures.

The canonical acoustic structure of a spoken letter containing
a stop (i.e., “P”, “T”,”B”,”D”,”K”) consists of a closure, a burst
release with frication and aspiration and the following vowel (E
or A) as the case may be. The difference in time between the
onset of the burst and the onset of voicing associated with the
vowel is denoted as the Voice Onset Time (VOT). In syllable initial
pre-stressed positions the VOT for unvoiced sounds is typically
longer than that for voiced sounds. Various psychophysical studies
have been conducted (notably by Lisker, 1975) where stimuli with
varying VOTs were presented to subjects and their classification
responses were measured. The VOT was found to be an important
determinant in deciding phonetic class for stops.

Figure 1 shows the distribution of VOT values for “T” and “D”
in syllable initial pre-stressed position. This has been obtained from
data collected from syllable-initial stops excised from fluent speech
using an inhouse database of 2000 phonetically balanced sentences
spoken by a single male speaker. Notice the clear separation of
the data with the unvoiced stop having a higher VOT in general
than the voiced stop. This is consistent with previous literature
and similar results exist for other stops as well; they have not been
provided here for lack of space.

How well do “T” and “D” separate in the spectral domain?
This is a trickier question to answer since it is difficult to com-
pare across different distance metrics defined on different spectral
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Figure 1: Distributions of VOTs for “T” (right) and “D” (left).

spaces of different dimensionalites. One way to get around this is
by constructing probability models in the different feature spaces
and using the following likelihood ratio discriminability measure:

For any x, define

d(x) = log
P (xjΛt)

P (xjΛd)
where P (xjΛt) is the probability of an arbitrary point x in the

feature space, given the model for “T” (Λt) constructed in that fea-
ture space (likewise for P (xjΛd)). Clearly d(x) is large for points
more likely to be generated by the model for “T” (likewise, small
for “D”). By estimating the distributions of d(x) for “T” and “D”
tokens collected as before, we can characterize the separability for
arbitrary feature spaces. Shown in fig. 2 are the distributions of
d(x) for probability models constructed in spectral space as well as
probability models constructed in VOT space. The spectral repre-
sentation consisted of filter bank outputs (logarithmically spaced).
A principal components rotation was performed for orthogonaliza-
tion and dimensionality reduction and Gaussian probability mod-
els were then constructed. In contrast, simple univariate Gaussian
probability models were constructed in VOT space. Notice the
significantly superior separability of the models developed using
the VOT as a criterion. Similar results have been obtained with
other kinds of spectral representations and have not been provided
here for lack of space. This suggests that the VOT is a better can-
didate for an acoustic-phonetic feature that triggers this particular
phonetic distinction. Psychophysical results of Lisker and others
provide further credibility to this point of view.

3. RECOGNITION SETUP

Having demonstrated that the VOT provides better separability
than usual spectral models, the important question remains: can
one reliably extract it from the signal in an automatic manner and
use it for superior recognition performance? We describe below
one possible way in which this can be done.

3.1. A Two Pass Strategy

We have developed a two pass framework for recognition — the
system diagram is shown in fig. 3. A standard HMM state-of-the
art recognizer provides an initial recognition that is further refined
using alternate features and classifiers. The second pass features
and classifiers are appropriately tuned to specific sound classes and

Likelihood Score

Pr
ob

ab
ility

 D
en

sit
y F

un
cti

on

-20 0 20 40 60 80

0.0
0.0

5
0.1

0
0.1

5

T

D

Figure 2: Separability of “T” from “D” using probability models
constructed from spectral (solid) and VOT (dotted) measures. No-
tice the superior separability of VOT (indicated by the curves on
the extreme left and right).
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Figure 3: System outline for a novel two pass strategy incorporating
alternative distinctive features in recognition. The upper half of
the system corresponds to a standard HMM based recognizer that
provides an initial segmentation and classification. The bottom
half of the system diagram corresponds to the second pass that
utilizes the output of the HMM as an initial guide and performs
alternative feature processing that are tuned for confusible sound
categories.

aim to reduce the errors made by the HMM. Most significantly,
the second pass strategy allows for class-specific processing of
temporal and spectral information in a more flexible manner.

As a first step, we have implemented such a strategy for letter
classification with a second pass correcting only the confusions
shown in table 1 . Due to the asymmetry in the confusion pair
statistics, we targeted only those segments that were classified as
an unvoiced stop by the standard classifier. Thus segments clas-
sified as “T”,“P” or “K” were reanalyzed in an attempt to locate
the burst and voicing more precisely. The second pass took the
speech segment that was classified as “T”,”P”, or”K”, and con-
ducted a finer search to obtain a VOT estimate. A 1 ms. analysis
was performed since considerable temporal precision is required
for transient segments such as stops. An energy differential op-
erator is used to locate the burst with a 1ms analysis. A pitch
tracking algorithm using a normalized cross-correlation function
with dynamic programming as in Talkin (1995) was used to locate
the onset of voicing at a 10 ms rate. Thereby an estimate of the
VOT was automatically computed from the signal. This VOT esti-
mate was then used to reclassify the segment into the appropriate
voiced/unvoiced category.



Alphabet # Tokens Corr. Sub. Confusion
59.7 % 32.5 % 3.3 %

T 2893 1726 940 (T -> D) 98
64.5 % 25.4 % 8.1 %

D 1804 1164 459 (D -> T) 146
65.4 % 28.0 % 4.6 %

P 1104 722 309 (P -> B) 51
57.2 % 34.0 % 2.5 %

B 1163 665 396 (B -> P) 29
80.1 % 13.9 % 2.4 %

K 1244 996 173 (K -> A) 30
46.9 % 25.2 % 8.2 %

A 4361 2047 1097 (A -> K) 357

Table 2: Summary of relevant letter accuracies after correction by
the automatic second pass. As before, the second column gives the
total number of tokens for each letter in the database, the third and
fourth give the number of correct classifications and substitutions
respectively and the final column gives the number of confusions
made.

3.2. Results on Stops

As described earlier, the estimate of VOT was used to reclassify
the stops into the corresponding voiced/unvoiced category. Differ-
ent thresholds were picked depending upon the classified place of
articulation of the stop. Note that by reclassifying in this manner,
we now potentially misclassify some other previously correctly
classified stops. We might also change some other confusions (e.g.
Z ! T might now be classified as Z ! D). However, these new
confusions do not affect the overall classification accuracy for the
other sounds, it just affects the distributions of their errors. Shown
in table 2 are the new confusion accuracies for the six letters under
consideration here. Notice how (T -> D) has increased while (D
-> T) has decreased.

In this experiment, we have targeted only the confusions caused
by the voicing dimension for stops. Shown in table 3 are the six
relevant confusions that our system handles at the moment. The
three columns indicate the results for the first pass, the second
pass with just one voiced/unvoiced classifier for all stops (using a
VOT threshold of 40 ms. to classify) and a second pass with three
classifiers with different thresholds depending upon the place of
articulation of the relevant stop (best performance). Thus we see
that the overall T/D confusions are reduced by 29%, the P/B confu-
sions are reduced by 57%, and the K/A confusions are reduced by
54%. Thus for the six letters that we considered here, this amounts
to an overall reduction of the error rate by 48.7%.

4. CONCLUSIONS

This is a first step towards incorporating distinctive features as an
error correcting device to discriminate between confusable pairs in
a statistical recognizer. From an examination of the voicing feature
for stops, we conclude that the VOT,a temporal cue for discriminat-
ing between voiced and unvoiced stops in syllable initial positions
provides superior separability to spectral cues. Furthermore, it can
be extracted automatically from the signal and improves current
recognition scores significantly. Future directions on the voicing
feature include better ways of extracting the correlates of voicing
in different contexts and testing robustness to noise. More sig-

Confusion First Pass Second P. (One) Second P. (Three)
T -> D 42 81 98
D -> T 304 191 146
P -> B 14 76 51
B -> P 173 58 29
K -> A 2 18 30
A -> K 850 535 357

Table 3: Number of confusions along the voicing dimension using
the first pass system; the second pass (with fixed VOT threshold set
at 40 ms) and a second pass with place of articulation-dependent
VOT threshold.

nificantly, we hope to enlarge the feature set to include a greater
number of classes and the details of our second-passclassifier have
to be developed further in this context.
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