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ABSTRACT

In an effort to efficiently code the spectral envelope of speech sig-
nals for wideband speech coding based on sinusoidal models, a ro-
bust computation of discrete cepstrum coefficients and their quan-
tization is investigated. A parameterization of the spectral enve-
lope has been proposed which is based on discrete cepstral coef-
ficients using regularization techniques. This paper presents an
efficient quantization scheme for these coefficients in order to use
them in applications like speech coding. We present results which
show a35% reduction in bitrate when compare to simple scalar
quantization. To verify the efficiency of the proposed quantization
schemes, informal listening tests were performed in the context of
a sinusoidal coder.

1. INTRODUCTION

The estimation of a continuous spectral envelope when only dis-
crete values of this envelope are specified is a subject of consid-
erable importance with applications to speech coding and speech
synthesis. In speech coding, an efficient parameterization of the
spectral envelope is desirable. In speech synthesis, where pitch
modifications are required, the amplitudes at the new harmonics
can be obtained by resampling the continuous spectral envelope.
In the context of sinusoidal coders it is desirable to find a repre-
sentation method that leads to an envelope which passes through
the measured sine-wave amplitudes. While a number of techniques
may be used for estimating the spectral envelope including linear
prediction or simple cepstral estimation techniques, none of these
methods satisfy the above criterion. An attempt to use standard
cepstral analysis on an interpolated spectral envelope has been re-
ported in [1]. However, a large number of cepstral coefficients has
been used for an accurate envelope fitting in this case. The same
problem has been addressed in [2] where a set of nonlinear equa-
tions were derived which required the use of a costly iterative pro-
cedure. Galaset.al. [3] estimated the cepstral coefficients by min-
imizing a frequency-domain least-squares criterion (discrete cep-
strum coefficients). Although this method proves to be very effi-
cient it is plagued with ill-conditioning problems. Capp´e,et.al. [4]
proposed aregularizedtechnique to achieve a well-behaved spec-
tral envelope using discrete cepstrum coefficients, avoiding ill-
conditioning problems.

The regularized cepstrum coefficients have proven to be a good
candidate for an efficient parameterization of the spectral enve-
lope. They have already been used in speech modification [5] and
in voice conversion [6]. The quantization of the regularized cep-
strum coefficients is an important issue if they are to be used in
speech coding.

This paper extends the work of Capp´e, et.al., by introducing
the quantization of the regularized cepstrum coefficients. To esti-
mate the number of bits that should be allocated for a regularized
cepstrum vector while maintaining transparent speech quality, a
sequence of quantization methods is used. First, a set of scalar
quantizers is optimized based on the probability density function
of the regularized cepstrum coefficients. This gives a first estimate
of how many bits should be allocated per cepstrum vector. To re-
duce the number of bits while maintaining the same quality a per-
ceptual weighting criterion is proposed. Based on this criterion the
optimum order of the cepstrum analysis can be determined. Fur-
ther saving of bits can be realized by reducing the intra-correlation
of the cepstrum vectors, based on the Karhunen-Loeve Transform,
KLT, and by exploiting the inter-correlation of the cepstrum vec-
tors using vector prediction. A safety-net quantizer is used in par-
allel with the predictive quantizer for low correlated vectors, e.g.
transition from voiced/unvoiced to unvoiced/voiced. Finally, two
methods of vector quantization, split and multistage, have been
studied in order to further reduce the bit rate. Listening tests have
been carried out in the context of the Harmonic plus Noise Model,
HNM [5] and the results show the efficiency of the proposed quan-
tization scheme.

The paper is organized in three major parts. First, we describe
the regularization technique for the estimation of discrete cepstrum
coefficients which was proposed by Capp´e, et.al.. Next, we ad-
dress the problem of the quantization of the regularized discrete
cepstrum coefficients. The last section shows results from an ex-
perimental study where the quantization scheme has been tested
on a large speech database. Results from listening tests using the
Harmonic plus Noise Model, HNM, are also reported.

2. COMPUTATION OF THE REGULARIZED CEPSTRUM
COEFFICIENTS (RCC)

In [4], the spectral envelope of a speech signal is represented by
discrete cepstrum coefficients. Given a set ofL sine-wave am-
plitudesak, measured at the normalized frequenciesfk, the dis-
crete cepstrum is obtained by minimizing the squared error be-
tween a measured magnitudeak and a magnitudejS(fk)j in the
log-spectral domain,

� =

LX
k=1

(log ak � log jS(fk)j)
2
: (1)



The spectral envelopejS(f)j is related to the discrete cepstrum
coefficients by

log jS(f)j = c0 + 2

pX
i=1

ci cos(2�fi) =Mc; (2)

whereci are the coefficients of the cepstrum vectorsc, p is the
order of the cepstrum, and the matrixM is defined as

M =

"
1 2 cos(2�f1) 2 cos(2�f12) ::: 2 cos(2�f1p)
: : : :
1 2 cos(2�fL) 2 cos(2�fL2) ::: 2 cos(2�fLp)

#

(3)
The optimalc that minimizes� is given by

c = (MT
M)�1MT

a (4)

wherea = [log(a1)::: log(aL)]
T are the specified log amplitudes.

The problem with the solution given by (4) is that the matrixMTM

is ill-conditioned whenp approachesL (singular whenp � L).
Regularization techniquesare well-known for obtaining well-behaved
solutions to over-parameterized estimation problems [7]. The reg-
ularized discrete cepstrum coefficients are obtained by minimizing
the error criterion

�r =

LX
k=1

(log ak � log jS(fk)j)
2 + �R[S(f)] (5)

The first term is the error criterion as it is given in (1). The parame-
ter� controls the degree of regularization, and should be increased
asp approaches L. A classical smoothness constraintR[S(f)] pe-
nalizes rapid variations in the spectral envelope. The functional
form of this constraint is:

R[S(f)] =

Z
1=2

�1=2

[
d

df
log jS(f)j]2df (6)

In [4], it is shown that the minimum value of�r is obtained ifc is
selected as

c = [MT
M+ �R]�1MT

a (7)

whereRis a diagonal matrix with diagonal elements8�2[0; 12; 22;
:::; p2].

3. QUANTIZATION OF THE REGULARIZED
CEPSTRUM COEFFICIENTS

In this section, we study quantization of the regularized cepstrum
coefficients, and various methods to reduce the required number
of bits while still maintaining a perceptually transparent quanti-
zation. The following methods were applied sequentially: Scalar
quantization, perceptual weighting, Karhunen-Loeve transforma-
tion, predictive quantization, and vector quantization. The results
are summarized in Section 4.
The cepstrum vectors were computed from speech sampled at 16
kHz. The order of the cepstrum coefficients was determined by
listening tests, and we found that an order of 32 is enough to rep-
resent the spectral envelope for wideband speech signals. For the
simulations in this section we used a training database with more
than 200,000 cepstrum vectors. An independentdatabase was used
for evaluation.

3.1. Scalar quantization

The simplest possible quantization method is scalar quantization.
The design of scalar quantizers for the 32-dimensional cepstrum
vectors consists of two steps: first an appropriate number of bits is
found for each quantizer, and then these quantizers are optimized
for the probability density of the cepstrum vector.
The bit allocation procedure should allocate the available bits over
the scalar quantizers to maximize the SNR (signal-to-quantization-
noise-ratio), defined as

SNR= 10 log
10

 
E
�Pp

k=0
c2k
�

E
�Pp

k=0
(ck � ~ck)

2
�
!
; (8)

whereck and~ck are thekth components of the cepstrum vector
and the quantized cepstrum vector, respectively.
Based onrate-distortion theory[8] for Gaussian variables, an ap-
proximate bitallocation for the (non-Gaussian) cepstrum vectors
can be derived. For scalar quantization, Gaussian rate-distortion
theory tell us that the bits should be allocated to make the distor-
tion of each quantizer equal, and that an approximate bit allocation
for quantizerk is given by

Rk = R
log

2
�2kPp

i=0
log

2
�2i

; k = 0::p� 1 (9)

that is, the optimal rateRk is proportional to the logarithm of the
variance�2i . R is the total number of bits that is available. With the
above Gaussian bit allocation formula, and with additional fine-
tuning to increase the SNR for the (non-Gaussian) cepstrum vec-
tors, we get the bit allocation shown as a solid line in Figure 1.
Using the bit allocation in (9), the scalar quantizers are optimized
for the pdf of the cepstrum vectors (using e.g. Max-Lloyd training
[9]). Listening tests reveal that an SNR of 35 dB or higher is re-
quired for inaudible quantization distortion. With the scalar quan-
tization scheme discussed above, a total of 100 bits are required to
reach the desired SNR.

3.2. Cepstrum perceptual weighting

When we tested different bit allocations for the scalar quantizer,
and performed listening tests to determine the subjective quality,
it was discovered that the first few components of the cepstrum
vectors were more important for the subjective quality than the
high-indexed components. We therefore decided to introduce a
perceptually weighted SNR measure for the cepstrum vectors. The
weighted SNR, WSNR, is computed as

WSNR= 10 log
10

 
E
�Pp

k=0
c2kwk

�
E
�Pp

k=0
(ck � ~ck)

2
wk

�
!
; (10)

wherewk is the weighting function. We propose a simple weight-
ing function, given by

wk = C
k
: (11)

The constantC must be determined by listening tests. Values of
C in the interval0:6� 0:7 were found to give perceptually good
results. In Figure 1 the resulting bitallocations for the 32 compo-
nents of the cepstrum vectors are depicted, for the two casesC = 1
(unweighted) andC = 0:65. Only the first 21 cepstrum compo-
nents were necessary to quantize in our experiments. With a bit
allocation determined by the weighting function proposed above
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Figure 1: Bit allocation for scalar quantization of unweighted
(solid) and weighted (dashed)C = 0:65 cepstrum vectors.
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Figure 2: Variances for the cepstrum vectors (solid), and for the
KLT-decorrelated vectors (dashed). The variances directly gives
the bit allocation.

(C = 0:65) we were able to reduce the number of bits to 87, and
still achieve the same perceptual quality as in the unweighted case
using 100 bits. The corresponding WSNR is 39 dB.

3.3. Karhunen-Loeve transform

To further improve the performance of the scalar quantization sche-
me, theKarhunen-Loeve transform(KLT) can be employed. The
KLT decorrelates the incoming vectors, thereby leading to bit sav-
ings in scalar quantization. The KLT matrixT is composed by the
eigenvectorslk of the process,

T = [l0; l1; :::; lp]
T
; (12)

and these eigenvectors can be found by solving the system of equa-
tions

R00lk = �klk for k = 0; 1; :::; p; (13)

wherelk are the eigenvalues, andR00 is the autocorrelation ma-
trix, defined as in (16). The vectorsy = Tx are then uncorrelated.
In Figure 2 we see the variances for the cepstrum vectors and for
the decorrelated vectors. It can be seen after KLT, the variance is
more localized to low indices. However, the difference is small
since the cepstrum vector components are fairly uncorrelated to
begin with. With KLT, the total number of bits can be reduced
by 6, to 81, for the same WSNR as in direct quantization of the
weighted cepstrum parameters.

3.4. Vector prediction

Vector predictionhas been proposed as a method to exploit inter-
vector correlation of vector processes. A linear vector predictor of
orderK for a vector processxn can be written

x̂n =

KX
k=1

Ak~xn�k; (14)
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Figure 3: Histogram of a cepstrum coefficient (solid) and of the
prediction residual for the same coefficient (dashed). The variance
of the prediction residual is much lower, but the number of ”out-
liers” (the tails of the histogram) is high.

wherex̂n is the one-step-ahead prediction vector,~xn�k are earlier
quantized input vectors, andAk are the prediction matrices. The
optimum (in a MMSE sense) prediction matrices can be found by
solving a system of linear matrix equations. The experiments in
this document are restricted to first order prediction, and for this
case the optimum prediction matrix is given by

A1 = R01R
�1

11 (15)

whereRij are the correlation matrices,

Rij = E[xn�ix
T
n�j]: (16)

The correlation matrices are estimated by use of the database de-
scribed previously.
When the prediction matrixA1 is computed, a set of scalar quan-
tizers is optimized for quantization of the prediction error,en =
xn � x̂n.
The prediction gain was much lower than expected (estimated by
rate-distortion theory) in our experiments. In Figure 3, we can see
the explanation; the variance for the prediction error is much lower
than the variance of the cepstrum vector, but the tails of the pre-
diction error histogram are very wide. This is due to a ”2-mode”
behaviour of speech signals, with voiced and unvoiced segments.
A large part of the time the input vectors are highly correlated and
the predictor works well, but occasionally the input vector is un-
correlated with the previous, and the predictor is unable to perform
well. This results in ”outliers”, prediction residual vectors with
hard-to-quantize high-energy components. In the next subsection,
we discuss a solution to this problem.

3.5. Safety-net

The safety-net quantizer[10] was proposed as a solution to the
problem of low-correlation vectors discussed in the previous sub-
section. A safety-net quantizer is a memoryless quantizer working
in parallel with a predictive quantizer (or any other quantizer ex-
ploiting correlation between consecutive vectors). The advantage
of the safety-net scheme is that the memoryless quantizer takes
care of the low-correlation ”outliers”, and the predictive quan-
tizer can concentrate on the highly correlated vectors. Another
advantage is that error propagation, introduced by bit errors when
the transmission channel is noisy, is canceled by the memoryless
quantizer, but in this document we assume error free transmission.
A safety-net extended predictive quantization scheme is depicted
in Figure 4. In this report, the predictive and the safety-net quan-
tizers were trained independently; the performance can be further
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Figure 4: A predictive quantizer (PQ) extended with a safety-net
quantizer (Q). One bit is used to select which of the quantizers to
use.

improved by simultaneous optimization.
The safety-net scheme leads to additional reductions of 11-12 bits,
and we need a total of 70 bits to achieve transparent cepstrum
quantization.

3.6. Vector quantization

Vector quantization(VQ) has been proven to be the optimal quanti-
zation scheme, in the sense that for a given delay, no other scheme
can perform better than VQ [11]. Since single-stage, full-size VQ
is very complex, a large number of complexity reduction methods
have been proposed. We have studied two methods for ”divide-
and-conquer”-quantization of cepstrum and prediction residual vec-
tors: split VQ and multistage VQ [11].
With split VQ, the input vectors are divided into a set of smaller
vectors, which are subsequently quantized independently. The
complexity is considerably reduced compared to the complexity
of full-size VQ, but some performance loss is inevitable.
The 32-dimensional vector is split into 8 subvectors of various di-
mension, and each of these are quantized with a VQ with 10 bits
or less. This scheme leads to a reduction of 5 bits compared to the
scalar quantization schemes.
The basic idea ofmultistage VQis to divide the quantization into
successive stages, where the first stage performs a relatively crude
quantization, the second stage quantize the error vector between
the original and the quantized first stage output, and so on. Multi-
stage VQ is preferable when there is high correlation between the
components in the vector, and a split scheme cannot perform well.
In our experiments, the multistage VQ (with 7 stages) performs
approximately as good as the split VQ, with a 5 bit reduction com-
pared with scalar schemes. The complexity is considerably higher
than the complexity of the split VQ, however.

4. SUMMARY AND DISCUSSION

To verify the efficiency of the proposed quantization schemes lis-
tening tests have been carried out with a sinusoidal speech coder,
HNM [5]. In our listening tests, a WSNR of about 39 dB or higher
was required for transparent quantization of the cepstrum vectors.
In table 4, we present the required number of bits using the dif-
ferent quantization schemes. Note that each scheme builds on
the results of the previous, i.e. the KLT was applied on percep-
tually weighted vectors, the predictor was designed for the KLT-
decorrelated vectors and so on.
By employing more and more sophisticated methods, we were able
to reduce the number of bits for a transparent quantization by a to-
tal of 35 bits (from 100 bits per vector to 65 bit per vector). The
largest gains were due to the use of a weighted distortion measure,
and from applying a safety-net-extended predictive quantization

scheme.

Table 1: The required number of bits for the different quantization
schemes, for a perceptually transparent quantization

quantizer scheme bits

scalar quantization 100
perceptual weighting 87
KLT 81
prediction+safetynet 70
vector quantization 65

Preliminary tests to fully quantize an HNMwideband speech
coder were carried on. About 80 % of the encoded bit-stream in the
HNM coder comes from spectral envelope information. With the
above quantization scheme and a frame size of 10 ms, the rate for
the HNMwideband speechcoder will be below 8 kbit/s. Some pre-
liminary experiments with a frame size of 20 ms were also done,
and the results suggest that a rate below 5 kbit/s is within reach.
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