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ABSTRACT This paper extends the work of Capet.al, by introducing
» . the quantization of the regularized cepstrum coefficients. To esti-
In an effort to efficiently code the spectral envelope of speech sig- ymate the number of bits that should be allocated for a regularized
nals for wideband speech coding based on sinusoidal models, a rOgepstrum vector while maintaining transparent speechityua
bust computation of discrete cepstrum coefficients and their quan-gequence of quantization methods is used. First, a set of scalar
tization is investigated. A parameterization of the spectral enve- gantizers is optimized based on the probability density function
lope has been proposed which is based on discrete cepstral coefsf the regularized cepstrum coefficients. This gives a first estimate
ficients using regularization techniques. This paper presents anys how many bits should be allocated per cepstrum vector. To re-
efficient quantization scheme for the_se coefficients in order to Us€qyce the number of bits while maintaining the same quality a per-
them in applications like speech coding. We present results which cepyal weighting criterion is proposed. Based on this criterion the
show a35% reduction in bitrate when compare to simple scalar optimum order of the cepstrum analysis can be determined. Fur-
quantization. To verify the efficiency of the proposed quantization {her saving of bits can be realized by reducing the intra-correlation
schemes_, informal listening tests were performed in the context of ¢ ihe cepstrum vectors, based on the Karhunen-Loeve Transform,
a sinusoidal coder. KLT, and by exploiting the inter-correlation of the cepstrum vec-
tors using vector prediction. A safety-net quantizer is used in par-
1. INTRODUCTION allel with the predictive quantizer for low correlated vectors, e.g.
transition from voiced/unvoiced to unvoiced/voiced. Finally, two
The estimation of a continuous spectral envelope when only dis- Methods of vector quantization, split and lfratage, have been
crete values of this envelope are specified is a subject of consid-Studied |n_order to further reduce the bit rate._Llstenlng_tests have
erable importance with applications to speech coding and S,peedipeen carried out in the context of the_ Harmonlc plus Noise Model,
synthesis. In speech coding, an efficient parameterization of theHNM [5] and the results show the efficiency of the proposed quan-
spectral envelope is desirable. In speech synthesis, where pitcfiization scheme.
modifications are required, the amplitudes at the new harmonics  The paper is organized in three major parts. First, we describe
can be obtained by resampling the continuous spectral envelopethe regularization technique for the estimation of discrete cepstrum
In the context of sinusoidal coders it is desirable to find a repre- coefficients which was proposed by Cappt.al. Next, we ad-
sentation method that leads to an envelope which passes througldress the problem of the quantization of the regularized discrete
the measured sine-wave amplitudes. While a number of techniquesepstrum coefficients. The last section shows results from an ex-
may be used for estimating the spectral envelope including linear perimental study where the quantization scheme has been tested
prediction or simple cepstral estimation techniques, none of theseon a large speech database. Results from listening tests using the
methods satisfy the above criterion. An attempt to use standardHarmonic plus Noise Model, HNM, are also reported.
cepstral analysis on an interpolated spectral envelope has been re-
ported in [1]. However, a large number of cepstral coefficients has
been used for an accurate enveloptinfy in this case. The same
problem has been addressed in [2] where a set of nonlinear equa:
tions were derived which required the use of a costly iterative pro- 2. COMPUTATION OF THE REGULARIZED CEPSTRUM
cedure. Galast.al.[3] estimated the cepstral coefficients by min- COEFFICIENTS (RCC)
imizing a frequency-domain least-squares criterion (discrete cep-
strum coefficients). Although this method proves to be very effi- | [4], the spectral envelope of a speech signal is represented by
cientitis plagued with ill-onditioning problems. Cagpét.al.[4] discrete cepstrum coefficients. Given a set’osine-wave am-
proposed aegularizedechnique to achieve a well-behaved spec- piitudesa,, measured at the normalized frequendfigsthe dis-
tral envelope using discrete cepstrum coefficients, avoiding ill- crete cepstrum is obtained by minimizing the squared error be-

conditioning problems. N tween a measured magnitudg and a magnitudéS( fx)| in the
The regularized cepstrum coefficients have proven to be a goodiog-spectral domain,

candidate for an efficient parameterization of the spectral enve-
lope. They have already been used in speech modification [5] and
in voice conversion [6]. The quantization of the regularized cep-
strum coefficients is an important issue if they are to be used in € — Z(log ax — log |S(fk)|)2~ (1)
speech coding. P
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The spectral envelopgS(f)| is related to the discrete cepstrum 3.1. Scalar quantization

coefficients by

p
log |S(f)| :co—l—ZZC,'cos(Zﬂfi) = Me, 2
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wherec; are the coefficients of the cepstrum vectory is the
order of the cepstrum, and the math4 is defined as

1 2cos(2mf1) 2cos(27f12) ... 2cos(2m f1p)

M= : : :
1 2cos(2xwfr) 2cos(2mfr2) ... 2cos(2m frp)
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The optimale that minimizes is given by
c=M"M)"'M"a )

wherea = [log(a1)...log(ar)]" are the specified log amplitudes.

The problem with the solution given by (4) is that the maiviX M
is ill-conditioned wherp approached. (singular wherp > L).

The simplest possible quantization method is scalar quantization.
The design of scalar quantizers for the 32-dimensional cepstrum
vectors consists of two steps: first an appropriate number of bits is
found for each quantizer, and then these quantizers are optimized
for the probability density of the cepstrum vector.

The bit allocation procedure should allocate the available bits over
the scalar quantizers to maximize the SNR (signal-to-quantization-
noise-ratio), defined as

E [ P ci]
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wherecy andé are thekth components of the cepstrum vector
and the quantized cepstrum vector, respectively.

Based orrate-distortion theory8] for Gaussian variables, an ap-
proximate bitallocation for the (non-Gaussian) cepstrum vectors
can be derived. For scalar quantization, Gaussian rate-distortion
theory tell us that the bits should be allocated to make the distor-

SNR=10log,, (

Regularization techniques are well-known for obtaining well-behavéi@n of each quantizer equal, and that an approximate bit allocation
solutions to over-parameterized estimation problems [7]. The reg- for quantizerk is given by

ularized discrete cepstrum coefficients are obtained by minimizing

the error criterion

er = (logar —log [S(fi))’ + AR[S(H)]  (5)

k=1

log, o?
>, log, 77

that is, the optimal raté;, is proportional to the logarithm of the
variances?. R is the total number of bits thatis available. With the
above Gaussian bit allocation formula, and with additional fine-

Ry =R k=0.p—1 9)

The first term is the error criterion as it _is givenin (1). The parame- {ning to increase the SNR for the (non-Gaussian) cepstrum vec-
ter A controls the degree of regularization, and should be increasedrs, we get the bit allocation shown as a solid line in Figure 1.

asp approaches L. A classical smoothness consti[ist( )] pe-

Using the bit allocation in (9), the scalar quantizers are optimized

nalizes rapid variations in the spectral envelope. The functional ¢y, the pdf of the cepstrum vectors (using e.g. Max-Lloyd training

form of this constraint is:

1/2
me=l$%mwmmﬁ ®)

In [4], itis shown that the minimum value ef is obtained ifc is
selected as
c=[M"M+ AR]"'M"a 7
whereRis a diagonal matrix with diagonal elemegits’ [0, 1%, 22,
2
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3. QUANTIZATION OF THE REGULARIZED
CEPSTRUM COEFFICIENTS

In this section, we study quantization of the regularized cepstrum
coefficients, and various methods to reduce the required number
of bits while still maintaining a perceptually transparent quanti-

zation. The following methods were applied sequentially: Scalar
quantization, perceptual weighting, Karhunen-Loeve transforma-
tion, predictive quantization, and vector quantization. The results

are summarized in Section 4.

[9]). Listening tests reveal that an SNR of 35 dB or higher is re-
quired for inaudible quantization distortion. With the scalar quan-
tization scheme discussed above, a total of 100 bits are required to
reach the desired SNR.

3.2. Cepstrum perceptual weighting

When we tested different bit allocations for the scalar quantizer,

and performed listening tests to determine the subjective quality,
it was discovered that the first few components of the cepstrum
vectors were more important for the subjective quality than the

high-indexed components. We therefore decided to introduce a
perceptually weighted SNR measure for the cepstrum vectors. The
weighted SNR, WSNR, is computed as

E [ 1}::0 ciwk]

, 10
E[ Zzo(ck—ékfwk]) (10)

wherew;, is the weighting function. We propose a simple weight-
ing function, given by

WSNR = 10log;, (

wy = C*. (11)

The cepstrum vectors were computed from speech sampled at 18he constan€ must be determined by listening tests. Values of
kHz. The order of the cepstrum coefficients was determined by C' in the interval0.6 — 0.7 were found to give perceptually good
listening tests, and we found that an order of 32 is enough to rep-results. In Figure 1 the resulting bitallocations for the 32 compo-
resent the spectral envelope for wideband speech signals. For th@ents of the cepstrum vectors are depicted, for the two ¢ased
simulations in this section we used a training database with more (unweighted) and” = 0.65. Only the first 21 cepstrum compo-
than 200,000 cepstrum vectors. An independentdatabase was useatents were necessary to quantize in our experiments. With a bit

for evaluation.

allocation determined by the weighting function proposed above
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Figure 1: Bit allocation for scalar quantization of unweighted
(solid) and weighted (dashe€@) = 0.65 cepstrum vectors.
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Figure 2: Variances for the cepstrum vectors (solid), and for the
KLT-decorrelated vectors (dashed). The variances directly gives

the bit allocation.

(C = 0.65) we were able to reduce the number of bits to 87, and
still achieve the same perceptual quality as in the unweighted cas

using 100 bits. The corresponding WSNR is 39 dB.

3.3. Karhunen-Loeve transform
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Figure 3: Histogram of a cepstrum coefficient (solid) and of the
prediction residual for the same coefficient (dashed). The variance
of the prediction residual is much lower, but the number of "out-
liers” (the tails of the histogram) is high.

wherex,, is the one-step-ahead prediction veckoy, . are earlier
quantized input vectors, anll;, are the prediction matrices. The
optimum (in a MMSE sense) prediction matrices can be found by
solving a system of linear matrix equations. The experiments in
this document are restricted to first order prediction, and for this
case the optimum prediction matrix is given by

A; =Ry Ry (15)
whereR;; are the correlation matrices,
Ri; = E[xn_ix,_,]. (16)

The correlation matrices are estimated by use of the database de-
scribed previously.

When the prediction matriA ; is computed, a set of scalar quan-
tizers is optimized for quantization of the prediction erkgy, =

Xn — Xn.

To further improve the performance of the scalar quantization sche-The prediction gain was much lower than expected (estimated by

me, theKarhunen-Loeve transforfiKLT) can be employed. The

rate-distortion theory) in our experiments. In Figure 3, we can see

KLT decorrelates the incoming vectors, thereby leading to bit sav- the explanation; the variance for the prediction error is much lower

ings in scalar quantization. The KLT matfl is composed by the
eigenvectors; of the process,

T =[lo, 1, ...,1,]", (12)

and these eigenvectors can be found by solving the system of equ

tions
Roolx = Axlx for k :0,1,...,]37 (13)

wherely are the eigenvalues, aRl, is the autocorrelation ma-
trix, defined as in (16). The vectogs= Tx are then uncorrelated.

a_

than the variance of the cepstrum vector, but the tails of the pre-
diction error histogram are very wide. This is due to a "2-mode”
behaviour of speech signals, with voiced and unvoiced segments.
A large part of the time the input vectors are highly correlated and
the predictor works well, but occasionally the input vector is un-
correlated with the previous, and the predictor is unable to perform
well. This results in "outliers”, prediction residual vectors with
hard-to-quantize high-energy components. In the next subsection,
we discuss a solution to this problem.

In Figure 2 we see the variances for the cepstrum vectors and for,
the decorrelated vectors. It can be seen after KLT, the variance i53'5' Safety-net

more localized to low indices. However, the difference is small The safety-net quantizel0] was proposed as a solution to the
since the cepstrum vector components are fairly uncorrelated toproblem of low-correlation vectors discussed in the previous sub-
begin with. With KLT, the total number of bits can be reduced section. A safety-net quantizer is a memoryless quantizer working
by 6, to 81, for the same WSNR as in direct quantization of the jn parallel with a predictive quantizer (or any other quantizer ex-
weighted cepstrum parameters. ploiting correlation between consecutive vectors). The advantage
of the safety-net scheme is that the memoryless quantizer takes
care of the low-correlation "outliers”, and the predictive quan-
tizer can concentrate on the highly correlated vectors. Another
advantage is that error propagation, introduced by bit errors when
the transmission channel is noisy, is canceled by the memoryless
quantizer, but in this document we assume error free transmission.
A safety-net extended predictive quantization scheme is depicted
in Figure 4. In this report, the predictive and the safety-net quan-
tizers were trained independently; the performance can be further

3.4. Vector prediction

Vector predictiorhas been proposed as a method to exploit inter-
vector correlation of vector processes. A linear vector predictor of
orderK for a vector process,, can be written

K
Xn = g Akin—lm
k=1

(14)
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= PQ °« - Table 1: The required number of bits for the different quantization
f schemes, for a perceptually transparent quantization
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Figure 4: A predictive quantizer (PQ) extended with a safety-net

quantizer (Q). One bit is used to select which of the quantizers to scalar quantlzgtlon 100
use. perceptual weightind 87
KLT 81
prediction+safetynet| 70
improved by simultaneous optimization. vector quantization | 65
The safety-net scheme leads to additional reductions of 11-12 bits,
and we need a total of 70 bits to achieve transparent cepstrum
quantization. Preliminary tests to fully quantize an HNMlideband speech
coderwere carried on. About 80 % of the encoded bit-stream in the
3.6. Vector quantization HNM coder comes from spectral envelope information. With the

above quantization scheme and a frame size of 10 ms, the rate for
Vector quantizatioVQ) has been proven to be the optimal quanti- - the HNMwideband speeatoder will be below 8 kbit/s. Some pre-
zation scheme, in the sense that for a given delay, no other schemgminary experiments with a frame size of 20 ms were also done,
can perform better than VQ [11]. Since single-stage, full-size VQ and the results suggest that a rate belowiBkks within reach.
is very complex, a large number of complexity reduction methods
have been proposed. We have studied two methods for "divide-
and-conquer’-quantization of cepstrum and prediction residual vec-
tors: split VQ and multistage VQ [11]. R ; P
With split VQ, the input vectors are divided into a set of smaller [1] zbgémcélégﬁgagi; 'sFy'n?hiang”ké;gu;ﬁédil ngllinv?alll n
vectors, which are subsequently quantized independently. The eds.), ch. 4, pp. 121-173 Elsevfer 1995 ' '
complexity is considerably reduced compared to the complexity I ' o ' )
of full-size VQ, but some performance loss is inevitable. [2] A.El-aroudiand J. Makhoul, “Discrete all-pole mdidrey,”
The 32-dimensional vector is split into 8 subvectors of various di- Proc. IEEE vol. 39, pp. 411-423,1991.
mension, and each of these are quantized with a VQ with 10 bits [3] T. Galas and X. Rodet, “An improved cepstral method for
or less. This scheme leads to a reduction of 5 bits comparedto the  deconvolution of source-filter systems with discrete spectra:
scalar quantization schemes. Application to musical sound signals,” Broc. of Interna-
The basic idea ofmultistage VQs to divide the quantization into tional Computer Music ConferencéGlasgow), pp. 82-84,
successive stages, where the first stage performs a relatively crude  1990.
quantization, the second stage quantize the error vector between
the original and the quantized first stage output, and so on. Multi- : . - .
stage VQ is preferable when there is high correlation between the dlscrettla cepstrum estlmatlonEEE Signal Processing Let-
components in the vector, and a split scheme cannot perform well. ters vol. 3(4), pp. 100-102, April 1996.
In our experiments, the multistage VQ (with 7 stages) performs [5] Y. Stylianou, J. Laroche, and E. Moulines, “High-Qitya
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and from applying a safety-net-extended predictive quantization



