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ABSTRACT

The Coifman wavelets created by Daubechies have more zero
moments than imposed by specifications. This results in sys-
tems with approximately equal numbers of zero scaling func-
tion and wavelet moments and gives a partitioning of the sys-
tems into three well defined classes. The nonunique solutions
are more complex than for Daubechies wavelets.

Introduction

Wavelet systems have proven to be a popular and effective ba-
sis system for the expansion and representation of signals and
images [1, 2]. In addition to the requirements of multiresolu-
tion analysis, orthogonality, and finite support, requiring that
wavelet moments vanish has also proven valuable. Coifman
has suggested that also requiring scaling function moments to
be zero has some advantages. Daubechies created the “coiflet”
system by setting an equal number of scaling function and
wavelet moments to zero [3, 2, 4]. This number of required
zero moments plus one is called the degree of the coiflet sys-
tem.

It has been observed that the even degree Coifman systems
always achieve one more zero scaling function moment than is
specified and the odd degree systems also had one more zero
scaling function moment, but it was not contiguous with the
specified ones. We also discovered that certain lengths of scal-
ing function coefficient vectors were never generated by the
usual approach of looking at minimum length filters at each
degree.

In this paper we examine the characteristics of coiflet sys-
tems that do not have exactly the same number of scaling func-
tion and wavelet zero moments. This results in three classes of
coiflet systems, each with well defined characteristics. Two of
these had been previously reported and one is new. We define
these classes and describe their characteristics. We also show
why the total number of zero moments is larger than that pre-
dicted by the available degrees of freedom for coiflets while
the Daubechies wavelet systems achieve exactly the number
predicted by the degrees of freedom. Finally, we note that
the solutions that satisfy the requirements are not unique and
some, despite zero wavelet moments, are very rough. Like-
wise, despite zero scaling function moments, some are not at
all symmetric.

Zero Moment Wavelet Systems

The scaling function'(t) which generates a traditional
wavelet system [1, 2] is defined as the solution to the mul-
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tiresolution analysis (MRA) equation

'(t) =
X
n

p
2h(n)'(2t� n) (1)

and these functions are usually required to be orthogonal over
integer shifts by

R
'(t)'(t�k) dt = �(k) wheren andk are

integers. It has been shown [2, 1] that for (1) to have a solution
and be orthogonal,
X
n

h(n) =
p
2 and

X
n

h(n)h(n� 2k) = �(k): (2)

We call the supportN , the length of the scaling vector. That
is,h = fh(0); h(1); � � � ; h(N � 1)g.

The problem of wavelet system design is to findN values
for h(n) that satisfy the one linear equation in (2) and theN=2
quadratic equations in (2). That leavesN=2 � 1 degrees of
freedom in designing a wavelet system for some particular ap-
plication.

The Daubechies Systems
Daubechies [2] uses these degrees of freedom to require

N=2� 1 wavelet moments to be zero. This means

m1(k) =

Z
tk  (t)dt = 0 for k = 1; 2; 3; � � � ; K (3)

whereK = N=2� 1. One can show [5] that this is true if and
only if

�1(k) =
X
n

nk h1(n) = 0 for k = 1; 2; 3; � � � ; K (4)

where h1(n) are the wavelet coefficients which define the
wavelet (t) by

 (t) =
X
n

p
2h1(n)'(2t� n): (5)

For the wavelet to be orthogonal to the scaling function re-
quires

h1(n) = (�1)nh(1�n) and
X
n

h1(n) = �1(0) = 0:

(6)
Similar definitions of the moments for the scaling function and
scaling coefficients are given by

m(k) =

Z
tk '(t)dt and �(k) =

X
n

nk h(n): (7)



Daubechies developed a very nice analytical method for de-
signing theh(n) that satisfies (2) and (4). Three reasons
for requiring the maximum number of zero wavelet moments
are to obtain smooth scaling functions, to represent certain
order polynomials exactly by shifted scaling functions, and
to have a tractable design method. The characteristic of the
Daubechies wavelet system that is important to this paper is
that the Daubechies wavelets have exactly the same number of
zero wavelet moments as degrees of freedom, no more and no
less.

The Coifman Systems
Coifman suggested setting both scaling function and

wavelet moments to zero to obtain more symmetry and com-
pactness for numerical analysis applications. In addition to (3),
Daubechies [4, 2] posed the requirements

m(k) =

Z
tk '(t) dt = 0 for k = 1; 2; � � � ; L� 1 (8)

and one can show [5] that this is true if and only if

�(k) =
X
n

nk h(n) = 0: for k = 1; 2; � � � ; L� 1 (9)

From (2) we see that�(0) =
p
2 and cannot be made zero and

(6) requires�1(0) = 0. Solutions to (1) that also satisfy both
(3) and (8) require solutions to (2) and (2) that also satisfy (4)
and (9). The wavelet system generated from these solutions
with K = L � 1 are called coiflets of degreeL. The basis
functions are often more symmetric than the Daubechies ones,
but less smooth. In the design of these coiflets, one obtains
more total zero moments thanN=2 � 1. This was first noted
by Beylkin, et al [3].

This definition imposes the requirement that there be at least
L�1 zero scaling function moments and at leastL�1 wavelet
moments in addition to the one zero moment ofm1(0) re-
quired by orthogonality. This system is said to be of order
or degreeL and sometime has the additional requirement that
the length of the scaling function filterh(n), which is denoted
N , is minimum [2, 4].

The length-4 wavelet system has only one degree of free-
dom, so cannot have both a scaling function moment and
wavelet moment be zero (see Table 1). Tian [6] has derived
formulas for four length-6 coiflets. These are:
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or
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whereA =

p
7; B =

p
15 with the first formula (10) giving

the same result as Daubechies [2, 4] (corrected) and that of
Odegard and the third giving the same result as Wickerhauser
[7]. The results from (10) are included in Table 1 along with
the discrete moments of the scaling function and wavelet,�(k)
and�1(k) for k = 0; 1; 2; 3. The design of a length-6 Coif-
man system specifies one zero scaling function moment and
one zero wavelet moment (in addition to�1(0) = 0) but we,
in fact, obtain one extra zero scaling function moment. That is
the result ofm(2) = m(1)2 from [5]. In other words, we get
one more zero scaling function moment than the two degrees
of freedom would seem to indicate. This is true for all lengths

N = 6` for ` = 1; 2; 3; � � � and is a result of an interaction be-
tween the scaling function moments and the wavelet moments
described later.

The scaling function from (10) is fairly symmetric, but not
around its center and the other three designs in (10), (11),
and (11) are not symmetric at all. The scaling functions from
(10) and (11) are fairly smooth but the one from (10) is very
rough and from (11) seems to be fractal. Examination of the
frequency responseH(!) shown in Figure 2 for the FIR fil-
tersh(n) shows very similar frequency responses for (10) and
(11) with (10) having a somewhat irregular but monotonic fre-
quency response and (11) having a zero on the unit circle at
! = �=3, i.e., not satisfying Cohen’s condition [2] for an or-
thogonal basis. These four designs, all satisfying the same
necessary conditions, have very different characteristics. This
tells us to be careful in using zero moment methods to design
wavelet systems. The designs are not unique and some are
better than others.

Table 1: Coiflet Scaling Function and Wavelet Coefficients
plus their Discrete Moments

N = 6, Deg.L = 2
n h(n) h1(n) �(k) �1(k) k
-2 -0.0727326 0.0156557 1.4142 0 0
-1 0.3378976 -0.0727326 0 0 1
0 0.8525720 -0.3848648 0 -1.163 2
1 0.3848648 0.8525720 -0.3757 -3.866 3
2 -0.0727326 -0.3378976 -2.8727-10.267 4
3 -0.0156557 -0.0727326

N = 8, Deg.L = 3
-4 0.0468750 0.0156557 1.414 0 0
-3 -0.0211601 -0.0727326 0 0 1
-2 -0.1406250 -0.3848648 0 0 2
-1 0.4384804 1.3848648 -2.994 0.18 3
0 1.3848648 -0.4384804 0 11.97 4
1 0.3848648 -0.1406250 -45.851 -43.97 5
2 -0.0727326 0.0211601 63.639 271.34 6
3 -0.0156557 0.0468750

N = 12, Deg.L = 4
-4 0.0163873 0.0007205 1.41 0 0
-3 -0.0414649 0.0018232 0 0 1
-2 -0.0673725 -0.0056114 0 0 2
-1 0.3861100 -0.0236801 0 0 3
0 0.8127236 0.0594344 0 11 4
1 0.4170051 0.0764885 -5.91 175 5
2 -0.0764885 -0.4170051 0 1795 6
3 -0.0594344 -0.8127236 -586.34 15230 7
4 0.0236801 -0.3861100 3096.31117752 8
5 0.0056114 0.0673725
6 -0.0018232 0.0414649
7 -0.0007205 -0.0163873

N = 4, Deg.L = 1
n h(n) h1(n) �(k) �1(k) k
-1 0.2241438 0.1294095 1.414 0 0
0 0.8365163 0.4829629 0 -0.517 1
1 0.4829629 -0.8365163 0.189 0.189 2
2 -0.1294095 0.2241438 -0.776 0.827 3

N = 10, Deg.L = 3
-2 0.0321284 0.0002337 1.41 0 0
-1 -0.0755392 -0.0005496 0 0 1
0 -0.0969350 -0.0135503 0 0 2
1 0.4915490 0.0337773 0 3 3
2 0.8051410 0.3044135 0 24 4
3 0.3044135 -0.8051410 -14.70 138 5
4 -0.0337773 0.4915490 64.98 710 6
5 -0.0135503 0.0969350
6 0.0005496 -0.0755392
7 0.0002337 0.0321284

Table 1 contains the scaling function and wavelet coeffi-



cients for the length-6 and 12 designed by Daubechies and
length-8 designed by Tian together with their discrete mo-
ments. We see the extra zero scaling function moments for
lengths 6 and 12 and also the extra zero for lengths 8 and 12
that occurs after a non zero one.

The continuous moments can be calculated from the dis-
crete moments and lower order continuous moments [3, 5, 8]
by

m(k) =
1

(2k � 1)
p
2

kX
`=1

�
k
`

�
�(`)m(k � `) (12)

and

m1(k) =
1

2k
p
2

kX
`=0

�
k
`

�
�1(`)m(k � `): (13)

These equations exactly calculate the moments defined by the
integrals in (8) and (3) from simple finite convolutions of the
discrete moments with the lower order continuous scaling mo-
ments. This allows the recursive calculation of the continuous
moments from the discrete moments. Similar equations also
hold for the general multiplier-M case.

An important relationship of the discrete moments for a sys-
tem withK � 1 zero wavelet moments is [5]

kX
`=0

�
k
`

�
(�1)`�(`) �(k � `) = 0: (14)

Solving for�(k) in terms of lower order discrete moments and
using�(0) =

p
2 gives fork even

�(k) =
�1

2
p
2

k�1X
`=1

�
k
`

�
(�1)`�(`) �(k � `) (15)

which allows calculating the even-order discrete scaling func-
tion moments in terms of the lower odd-order discrete scaling
function moments fork = 2; 4; � � � ; 2K � 2. For example:

�(2) =
1p
2
�2(1) (16)

�(4) =
�1

2
p
2
[8�(1) �(3)� 3�4(1)] (17)

� � � � � �

which can be seen from values in [9].
Johnson [10] noted from Beylkin [11] and Unser [12] that

by using the moments of the autocorrelation function of the
scaling function, a relationship of the continuous scaling func-
tion moments can be derived in the form

kX
`=0

�
k
`

�
(�1)k�`m(`) m(k � `) = 0 (18)

where0 < k < 2K if K � 1 wavelet moments are zero.
Solving form(k) in terms of lower order moments gives fork
even

m(k) =
�1

2

k�1X
`=1

�
k
`

�
(�1)`m(`)m(k � `) (19)

which allows calculating the even-order scaling function mo-
ments in terms of the lower odd-order scaling function mo-
ments fork = 2; 4; � � � ; 2K � 2. For example [10]:

m2 = m2

1 (20)

m4 = 4m3m1 � 3m4

1 (21)

m6 = 6m5m1 + 10m2

3 + 60m3m
3

1 + 45m6

1 (22)

m8 = 8m7m1 + 56m5m3 � 168m5m
3

1

+2520m3m
5

1 � 840m3m
2

1 � 1575m8

1 (23)

� � � � � �
if the wavelet moments are zero up tok = K � 1. Notice that
settingm1 = m3 = 0 causesm2 = m4 = m6 = m8 = 0
if sufficient wavelet moments are zero. This explains the extra
zero moments in Table 1. It also shows that the traditional
specification of zero scaling function moments is redundant.
In Table 1,m8 would be zero if more wavelet moments were
zero.

Coiflet Systems from a Specified Filter Length
The preceding section shows that Coifman systems do not

necessarily have an equal number of scaling function and
wavelet moments equal to zero. LengthsN = 6` + 2 have
equal numbers of zero scaling function and wavelet moments,
but always have even-order “extra” zero scaling function mo-
ments located after the first non-zero one. LengthsN = 6`
always have an “extra” zero scaling function moment. In-
deed, both will have several even-order “extra” zero moments
for longerN as a result of the relationships illustrated in (20)
through (23). LengthsN = 6`�2 do not occur for the original
definition of a Coifman system if one looks only at the degree
with minimum length. If we specify the length of the coeffi-
cient vector, all even lengths become possible, some with the
same coiflet degree.

Table 1 also shows the result of designing a length-4 system,
using the one degree of freedom to ask for one zero scaling
function moment rather than one zero wavelet moment as we
did for the Daubechies system. For length-4, we do not get
any “extra” zero moments because there are not enough zero
wavelet moments. Here we see a direct trade-off between zero
scaling function moments and wavelet moments. Adding these
new lengths to our traditional coiflets gives Table 2.

Table 2: Moments for Various Length-N and Degree-L
Coiflets, where (*) is the number of zero wavelet moments,
excluding them1(0) = 0

N L m = 0m1 = 0 m = 0m1 = 0 zero
set set* actual actual* mom.

4 1 1 0 1 0 1
6 2 1 1 2 1 3
8 3 2 2 2 2 4
10 3 3 2 4 2 6
12 4 3 3 4 3 7
14 5 4 4 4 4 8
16 5 5 4 6 4 10
18 6 5 5 6 5 11
20 7 6 6 6 6 12
22 7 7 6 8 6 14
24 8 7 7 8 7 15
26 9 8 8 8 8 16
28 9 9 8 10 8 18
30 10 9 9 10 9 19

The fourth and sixth columns in Table 2 contain the number
of zero wavelet moments, excluding them1(0) = 0 which is
zero because of orthogonality in all of these systems. The extra



zero scaling function moment that occurs just after a non zero
moment forN = 6`+2 is also excluded from the count. This
table shows coiflets for all even lengths. It shows the extra zero
scaling function moments that are sometime achieved and how
the total number of zero moments monotonically increases and
how the “smoothness” as measured by the H¨older exponent
[13] increases withN andL.

Conclusions

In this paper we have examined the relationship between
the number of specified zeros of scaling function moments,
wavelet moments, and the length of the scaling filter. By
specifying either equal numbers or one more scaling function
moment to be zero, all even length scaling filters can be ob-
tained. As noted earlier and illustrated in Table 3, these coiflets
fall into three classes. Those with scaling filter lengths of
N = 6` + 2 (due to Tian) have equal number of zero scaling
function and wavelet moments, but always has “extra” zero
scaling function moments located after the first non-zero one.
LengthsN = 6` (due to Daubechies) always have one more
zero scaling function moment than zero wavelet moment and
lengthsN = 6`� 2 (new) always have two more zero scaling
function moments than zero wavelet moments. These “extra”
zero moments are predicted by (20) - (23) and there are ad-
ditional even-order zero moments for longer lengths. We have
observed that within each of these classes, the H¨older exponent
increases monotonically.

Table 3: Number of Zero Moments for The Three Classes of
Generalized Coiflets (` = 1; 2; � � �), *excluding�1(0) = 0,
yexcluding non-contiguous zeros

N m = 0y m1 = 0* Total zero
Length achieved achieved moments

N = 6`+ 2 (N � 2)=3 (N � 2)=3 (2=3)(N � 2)
N = 6` N=3 (N � 3)=3 (2=3)(N � 3=2)

N = 6`� 2 (N + 2)=3 (N � 4)=3 (2=3)(N � 1)

The approach taken in other investigations of coiflets would
specify the coiflet degree and then find the shortest filter that
would achieve that degree. The lengthsN = 6`� 2 were not
found by this approach because they have the same coiflet de-
gree as the system just two shorter. However, they achieve two
more zero scaling function moments than the shorter length
with the same degree. The approach taken in this paper in
specifying the number of zero moments and/or the filter length
gives more insight and makes it easier to see the complete pic-
ture.

In addition to the variety of coiflets obtained by changing
the moment and/or the length specifications, many (perhaps
all) of these sets of specified zero moments have multiple so-
lutions. This is certainly true for length-6 as illustrated in (10)
through (11) and for other lengths that we have found exper-
imentally. The variety of solutions for each length can have
different shifts, different H¨older exponents, and different de-
grees of being approximately symmetric.

It may be that setting a few scaling function moments and
a few wavelets moments to zero may be sufficient with the
remaining degrees of freedom used for some other optimiza-
tion, either in the frequency domain or in the time domain. An
alternative might be to minimize a larger number of various
moments rather than to zero a few [14].
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