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ABSTRACT

Algebraic integers have been proven beneficial to DFT and non-
recursive FIR filter designs [2, 4] since algebraic integers can be
dense in C , resulting in short word width, high speed designs.
This paper uses another property of algebraic integers: algebraic
integers can produce exact pole zero cancellation pairs that are used
in recursive FIR, frequency sampling filter designs.

1. INTRODUCTION

An element of C is an algebraic integer if it is a zero of a monic
polynomial in F [x] where F is one of the fieldsZ,ZM, orZp [1,
p. 269]. M is taken to be composite and p is assumed to be
prime. If R is a commutative ring with unity and p(x) is an
irreducible polynomial inR[x] then the quotient ring R[x]=hp(x)i
is a field. Therefore, for non-zero N in such a field, N�1 exists.
For frequency sampling filters (FSFs), if p(x) is monic then the ring
properties ofZM=hp(x)i are sufficient and used in the remainder
of the paper. Now, p(x) will be selected so that algebraic integers
can be used to describe the complex plane.

If p(x) = xN � 1 then ZM[x]=hxN � 1i �= ZM[WN ]

where WN = ej2�=N . The quotient ring ZM[x]=hxN � 1i is
cyclic and has order N . Addition of polynomials A(x);B(x) 2
ZM[x]=hxN � 1i is given by

A(x) +B(x) =

N�1X
k=0

(ak + bk) x
k; (1)

and multiplication is given by

A(x) �B(x) =

N�1X
k=0

 
N�1X
l=0

albhk�liN

!
xk; (2)

where h�im is modular reduction of �modulom. Addition of poly-
nomials in the fieldZM[x]=hxN � 1i is the usual component-wise
addition operation. However, the multiplication of polynomials
given above is recognized as cyclic convolution. An interesting
property of the multiplication given above is that if B(x) = xl

then the product is simply a cyclic rotation of the coefficients of
A(x).

Cozzens and Finkenstein [2] have shown that the quotient ring
of algebraic integers produce for N � 8 a dense set in the com-
plex plane. The benefit for a DFT implementation is that greater
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Figure 1: Order of CN (x), which is �(N) (symbol �). Com-
putation of lower bound (solid line) starting with a high N value
(1000) and computation of �(N) down to N = 1. Lower bound
approximation by Landau (dashed line).

accuracy may be achieved using fewer bits than necessary with a
conventional approach. A potential decrease in system complexity
has also been suggested [2]. Not all N components ek = W k

N

are necessary; most of them are linear combinations of the others.
Only those components ek must be kept that are totative toN , that
is, gcd(N;k) = 1. Instead of xN � 1, it is sufficient to use the
cyclotomic polynomial [12, 9]

p(x) = CN (x) =
Y

gcd(N;k)=1
0<k<N

x�W k
N : (3)

Cozzens and Finkenstein [2] suggest the use of a power of two
length, N = 2l, for the DFT computation (�(2l) = 2l�1). In FSF
designs, the aim is to generate as many points N as possible on the
unit circle for a fixed �(N). A lower bound for �(N) is provided
by Landau [7],

�(N)

N
�

e�

loge loge(N) + 3:51
; (4)

where  is the Euler constant ( � 0:5772156649). From Figure 1
it can be seen that the Landau bound is not accurate enough for
small values of N . The following table provide the optimal choice
of N (i.e., maximal N for fixed �(N)).
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Figure 2: One stage FSF for N = 12 and pole at W 1
12. (a) One pole FSF filter (shadowing symbolizes the processing in parallel channels

for algebraic integers). (b) Without cyclotomic polynomial reduction. (c) Using the cyclotomic polynomialC12(x).

�(N) 1 2 4 6 8 12
N 2 6 12 18 30 42

�(N) 16 20 24 32 36 40
N 60 66 90 120 126 150

For example, choose �(N) = 2 as the number of components
per algebraic integer. ThenN = 6 exact roots on the unit circle can
be designed using e0

�= 1, e1
�= x, and the cyclotomic polynomial,

C6(x) = x2 + x + 1. The remaining algebraic integers may be
constructed using e2 = e1 � e0

�= x � 1, e3 = �e0
�= �1,

e4 = �e1
�= �x, and e5 = e0 � e1

�= 1 � x.

2. FREQUENCY SAMPLING FILTERS

A classical FSF consists of a comb filter cascaded with a bank of
frequency selective resonators [15]. The resonators independently
produce a collection of poles that annihilate the zeros produced by
the comb pre-filter. Gain adjustments are applied to the output of
the resonators so as to approximately profile the magnitude fre-
quency response of a desired filter. An FSF can also be created by

cascadingall-pole filter sections with all-zero filter (comb) sections
as suggested in Figure 2(a). The delay of the comb section 1�z�D

is chosen so that its zeros cancel the poles of the all-pole pre-filter.
It can be observed that wherever there is a complex pole, there also
exists an annihilating complex zero. The filter has pole/zero sym-
metry to the unit cycle which results in linear phase and constant
group delay properties. FSFs of this type are known to provide very
efficient multi-rate interpolation and decimation solutions and may
serve as high decimation rate filters for RF-to-baseband conversion
of radio signals [5, 6]. If the filter of Figure 2(a) is realized with
a non-recursive FIR, thenD (complex) multiplications andD� 1
additions are used. In contrast, the recursive design uses only one
multiplication and one subtraction!

2.1. Improvementof Frequency Selective Properties Using Al-
gebraic Integers

To motivate this discussion, consider again the filter shown in Fig-
ure 2(a). It can be argued that first-order filter sections produce
poles at angles 0� and 180�. Second-order pole sections with
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Figure 3: (a) Impulse response for the filter from Figure 2(a) with D = 12. (b) Eigenfrequency test D = 12.

integer coefficients can produce poles at angles 60�, 90�, 120�

according to the relationship 2 cos(2�K=D)=1, 0, and �1. For
sections of higher order, only multi-passband filters can be im-
plemented with integer coefficients [10]. The design algorithm
previously proposed by the authors [10] works well for filter banks
with few channels. This FSF design paradigm produces poor re-
sults for filter banks with fifteen to twenty channels, such as those
used in high quality speech processing. This is because higher or-
der pole sections generate multiple passbands and the complexity
for the anti-aliasing filter is greater than that of the FSF section.

Now, the algebraic integers introduced in the first section are
used to construct single passband building blocks. The conversion
from complex numbers to algebraic integers (withN > 4) has been
investigated [3, 8]. A direct approach for conversion of real integers
to algebraic integers uses only the first component, forcing all other
components to zero (i.e., A = (a0; 0; 0; : : :)). The conversion
from algebraic integers to complex numbers will be shown to be
efficiently implemented using the CORDIC algorithm [14, 11],
where

RefAg =
X
k

ak cos(2�k=N)

Im fAg =
X
k

ak sin(2�k=N):

2.2. Implementation Issues of Algebraic Integer Filters

Cozzens, Finkelstein, and Games [2, 3] have defined algebraic
numbers over the cyclotomic polynomialCN (x), (i.e., the quotient
ring ZM=hCN (x)i) to lower the number of vectors from N to
�(N), where �(N) is the Euler totient function. A polynomial
A(x) 2ZM=hCN (x)i is expressed as

A(x) = a0 + a1 � x+ a2 � x
2 + : : :+ a�(N)�1 � x

�(N)�1
N ;

with ai 2ZM. Addition of two polynomials, A(x) and B(x), in
this ring is component-wise and is given by

A(x) +B(x) =

�(N)�1X
k=0

(uk + vk) x
k: (5)

The multiplication is a convolution sum of the coefficients modulo
the cyclotomic polynomials CN (x). That is,

A(x) �B(x) = (a0b0) + (a0b1 + a1b0) x

+(a0b2 + a1b1 + a2b0) x
2 + : : : : (6)

Because algebraic integers can be used to represent N exact
numbers located on the unit circle, cyclotomic polynomials can
provide a framework for pole assignment of a single frequency
filter having poles on the unit circle.

2.3. Example Designs for Algebraic Integer Processing

Figure 2(a) presents a single stage, single passband FSF with alge-
braic integer processing, having a single pole angle of 360�=12 =
30�. Figures 2(b) and 2(c) shows two realization options, Fig-
ure 2(b) without cyclotomic polynomial reduction (i.e., p(x) =
x12 � 1), and Figure 2(c) uses algebraic integers over the cyclo-
tomic polynomialC12(x) = x4�x2 +1. For the realization found
in Figure 2(b) twelve components are used, resulting in twelve
comb sections. The realization with the cyclotomic polynomial
requires one more subtraction for the pole realization, but only
four comb sections. The complexity reduction through the use of
cyclotomic polynomials is obvious.

To simplify the graphical representation, the simulations are
performed with symmetric, (two’s Complement) single modulus
RNS arithmetic. Nevertheless, a high speed implementation should
use the multi-modulus RNS arithmetic isomorphism

ZM
�=Zm1 �Zm2 � � � � �ZmL (7)

within a set of relatively-prime, independent, small word length
channels mk [13]. Figure 3(a) shows the impulse response of
the filter from Figure 2(a) with a comb delay D = 12. Fig-
ure 3(b) shows the result of an eigenfrequency test with an input
signal x[i] = (a0[i]; 0; : : :) = (20 sin(2�i=12);0; : : :). Both re-
alizations are shown in Figures 2(b) and 2(c). Neglecting the
quantization error from sine and cosine functions, the architec-
tures generate identical impulse responses and eigenfrequency test
results. From Figure 4, it is obvious that the realization with cy-
clotomic polynomial reduction gives higher incidence of modular
over- and underflows (indicated with the arrows "#). It can also be
seen by comparing Figure 3 and Figure 4 that all overflows do not
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Figure 4: Overflow behavior to Figure 3 for v0 with eigenfrequency test D = 12. Modulus is 256. (a) Pole without modulo reduction. (b)
Pole with modulo reduction.

result in unacceptable behavior since the filters are implemented
using exact ZM arithmetic. The filter behaves identically to a
non-recursive FIR realization. To compare this realization with
that previously found by the authors [10], it should be emphasized
that the algebraic integer realization has higher complexity (four
times as many comb sections) but has a single complex pole and is
therefore a single passband filter and consequently does not need
an additional anti-aliasing filter.

3. CONCLUSION

The Hogenauer [6] idea of cascade integrator comb filter was
extended to bandpass-filters. Using a digital signal processing
scheme with algebraic integers provides single passbandfrequency
sampling filter building blocks. These filters are of low complexity
and are multiplier free, so that a wide selection of passband fre-
quenciesmay be implemented without the high cost of anti-aliasing
filters as previously proposed [10].
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