FREQUENCY SAMPLING FILTERSWITH ALGEBRAIC INTEGERS

U. Meyer-Baese, J. Méllott, and F. Taylor

High Speed Digital Architecture Laboratory
University of Florida
Gainesville 32611-6130, U.S.
e-mail: {uwejon,fjt} @alpha.ee.ufl.edu

ABSTRACT

Algebraic integers have been proven beneficial to DFT and non-
recursive FIR filter designs [2, 4] since algebraic integers can be
dense in C, resulting in short word width, high speed designs.
This paper uses another property of algebraic integers: algebraic
integers can produceexact pole zero cancellation pairsthat are used
in recursive FIR, frequency sampling filter designs.

1. INTRODUCTION

An element of C is an algebraic integer if it is a zero of a monic
polynomial in F'[z] where F' isone of thefields Z, Z as, or Z, [1,
p. 269]. M is taken to be composite and p is assumed to be
prime. If R is a commutative ring with unity and p(z) is an
irreducible polynomial in R[z] then the quotient ring R[z]/{p(z))
isafield. Therefore, for non-zero N in such afield, N~ exists.
For frequency samplingfilters (FSFs), if p(z) ismonicthenthering
properties of Z s/ {p(x)} are sufficient and used in the remainder
of the paper. Now, p(z) will be selected so that algebraic integers
can be used to describe the complex plane.

If p(z) = &V — 1 then Zum[z]/{zV — 1) & Zu[Wx]
where Wy = ¢’2"/V. The quotient ring Z a[z]/{z™ — 1) is
cyclic and has order N. Addition of polynomials A(z), ( ) €

Zm[z]/ (=™ — 1) isgiven by
A(z)+ B(z) = Z(ak + bi) o, (1)

and multiplication is given by

A(z)- B(z) = Z (Z alb(k—l)N) ¥, (2)

k=0 =0

where(-},,, ismodular reduction of - modulo m. Addition of poly-
nomialsin thefield Z a[z]/{z™ — 1) isthe usual component-wise
addition operation. However, the multiplication of polynomials
given above is recognized as cyclic convolution. An interesting
property of the multiplication given above is that if B(z) = &'
then the product is simply a cyclic rotation of the coefficients of
A(z).

Cozzensand Finkenstein[2] have shown that the quotient ring
of algebraic integers produce for N > 8 a dense set in the com-
plex plane. The benefit for a DFT implementation is that greater

U. Meyer-Baese was supported by a European Space Agency
fellowship.

88 M M
*
| Exact phi(N) .
80 min(phi(N->1)) —— . *
724 Landau-Minimum ----- . .o LA .

10 20 30 40 50 60 70 80 90 100 110 120 130 140
N

Figure 1: Order of Cy(z), which is ¢(N) (symbol ¢). Com-
putation of lower bound (solid line) starting with a high NV value
(1000) and computation of ¢(N) downto N = 1. Lower bound
approximation by Landau (dashed line).

accuracy may be achieved using fewer bits than necessary with a
conventional approach. A potential decreasein system complexity
has also been suggested [2]. Not all N componentse, = Wk
are necessary; most of them are linear combinations of the others.
Only those componentse;. must be kept that are totative to V, that
is, gcd( N, k) = 1. Instead of =™ — 1, it is sufficient to use the
cyclotomic polynomial [12, 9]
pe)=Cn(z)= [[ =-wk (3)
god( N, k) =1
0<k< N
Cozzens and Finkenstein [2] suggest the use of a power of two
length, N = 2!, for the DFT computation (¢(2') = 2'=%). In FSF
designs, theaim isto generate as many points V as possible on the
unit circle for afixed ¢(V). A lower bound for ¢(V) is provided
by Landau [7],

BN)
N = log,log,(N)+ 351

4)

where v isthe Euler constant (y = 0.5772156649). From Figure 1
it can be seen that the Landau bound is not accurate enough for
small valuesof V. The following table provide the optimal choice
of N (i.e,, maximal N for fixed ¢(N)).
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Figure 2: One stage FSF for N = 12 and pole at W5,. (a) One pole FSF filter (shadowing symbolizes the processing in parallel channels
for algebraic integers). (b) Without cyclotomic polynomial reduction. (c) Using the cyclotomic polynomial C'12(x).

JN)[1 2 4 6 8 12
N 2 6 12 18 30 42
SN)J[[16 20 24 32 36 40
N 60 66 90 120 126 150

For example, choose ¢( V') = 2 asthe number of components
per algebraicinteger. Then N' = 6 exact roots onthe unit circlecan
bedesignedusing ep = 1, 1 & z, and the cyclotomic polynomial,
Cs(z) = 22 4+ ¢ 4+ 1. The remaining algebraic integers may be
constructed using ez = e1 —eg = x — 1, e3 = —ep = —1,
e4s=—e1= —gp,andes =ep—e1 = 1—x.

2. FREQUENCY SAMPLING FILTERS

A classical FSF consists of a comb filter cascaded with a bank of
frequency selective resonators[15]. The resonatorsindependently
produce a collection of polesthat annihilate the zeros produced by
the comb pre-filter. Gain adjustments are applied to the output of
the resonators so as to approximately profile the magnitude fre-
quency response of adesired filter. An FSF can also be created by

cascadingall-polefilter sectionswith all-zerofilter (comb) sections
assuggestedin Figure 2(a). Thedelay of thecomb section 14 z~P
is chosen so that its zeros cancel the poles of the all-pole pre-filter.
It can be observed that wherever thereis acomplex pole, there also
exists an annihilating complex zero. The filter has pole/zero sym-
metry to the unit cycle which results in linear phase and constant
groupdelay properties. FSFsof thistypeareknownto providevery
efficient multi-rate interpol ation and decimation solutions and may
serveas high decimation rate filtersfor RF-to-baseband conversion
of radio signals[5, 6]. If thefilter of Figure 2(a) is realized with
anon-recursive FIR, then I (complex) multiplications and D — 1
additions are used. In contrast, the recursive design uses only one
multiplication and one subtraction!

2.1. Improvement of Frequency SelectivePropertiesUsing Al-
gebraicIntegers

To motivate this discussion, consider again the filter shown in Fig-
ure 2(a). It can be argued that first-order filter sections produce
poles at angles 0° and 180°. Second-order pole sections with
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Figure 3: (a) Impulse responsefor the filter from Figure 2(a) with D = 12. (b) Eigenfrequency test D = 12.

integer coefficients can produce poles at angles 60°, 90°, 120°
according to the relationship 2cos(2xr K/ D)=1, 0, and —1. For
sections of higher order, only multi-passband filters can be im-
plemented with integer coefficients [10]. The design algorithm
previously proposed by the authors[10] workswell for filter banks
with few channels. This FSF design paradigm produces poor re-
sults for filter bankswith fifteen to twenty channels, such asthose
used in high quality speech processing. Thisis becausehigher or-
der pole sections generate multiple passbandsand the complexity
for the anti-aliasing filter is greater than that of the FSF section.

Now, the algebraic integers introduced in the first section are
used to construct single passband building blocks. The conversion
from complex numbersto algebraicintegers(with N' > 4) hasbeen
investigated [3, 8]. A direct approach for conversion of real integers
to algebraicintegers usesonly thefirst component, forcing al other
components to zero (i.e, A = (ao,0,0,...)). The conversion
from algebraic integers to complex numbers will be shown to be
efficiently implemented using the CORDIC algorithm [14, 11],
where

Re{A} > ax cos(2rk/N)

k

> axsin(2rk/N).

k

Im{A}

2.2. Implementation Issuesof Algebraic Integer Filters

Cozzens, Finkelstein, and Games [2, 3] have defined algebraic
numbersover the cyclotomic polynomial Cw (), (i.e., thequotient
ring Za/{Cn(z))) to lower the number of vectors from N to
¢(NN), where ¢(N) is the Euler totient function. A polynomial
A(z) € Zip/{Cn(z)) isexpressed as

N)—1
Az) [k

ao+a1~x—|—a2~x2—|—...—|—a¢(N)_1~x

)

with a; € Z . Addition of two polynomials, A(z) and B(z), in
thisring is component-wiseand is given by

H(N)-1

A@)+ B(z)= > (wr+ o) 2",

k=0

(5

Themultiplication is aconvolution sum of the coefficients modulo
the cyclotomic polynomials Cx(z). That is,

A(x) . B(x) (aobo) + (aob1 + albo) T

+(aob2 + a1bs + azbo) x° + ...

(6)

Because algebraic integers can be used to represent N exact
numbers located on the unit circle, cyclotomic polynomials can
provide a framework for pole assignment of a single frequency
filter having poles on the unit circle.

2.3. Example Designsfor Algebraic I nteger Processing

Figure 2(a) presents a single stage, single passband FSF with alge-
braic integer processing, having a single pole angle of 360°/12 =
30°. Figures 2(b) and 2(c) shows two realization options, Fig-
ure 2(b) without cyclotomic polynomial reduction (i.e., p(z) =
¢ — 1), and Figure 2(c) uses algebraic integers over the cyclo-
tomic polynomial Cp(x) = «* — 2+ 1. For therealization found
in Figure 2(b) twelve components are used, resulting in twelve
comb sections. The realization with the cyclotomic polynomial
requires one more subtraction for the pole realization, but only
four comb sections. The complexity reduction through the use of
cyclotomic polynomialsis obvious.

To simplify the graphical representation, the simulations are
performed with symmetric, (two’'s Complement) single modulus
RNSarithmetic. Nevertheless, ahigh speed implementation should
use the multi-modulus RNS arithmetic isomorphism

Ling &2 Loy X Ligny X+ X Ly, (7)
within a set of relatively-prime, independent, small word length
channels m;, [13]. Figure 3(a) shows the impulse response of
the filter from Figure 2(a) with a comb delay I = 12. Fig-
ure 3(b) shows the result of an eigenfrequency test with an input
signal z[:] = (ao[1],0,...) = (20sin(2x:/12),0,...). Bothre-
alizations are shown in Figures 2(b) and 2(c). Neglecting the
quantization error from sine and cosine functions, the architec-
tures generate identical impulse responsesand eigenfrequency test
results. From Figure 4, it is obvious that the realization with cy-
clotomic polynomial reduction gives higher incidence of modular
over- and underflows (indicated with the arrows 1]). It canalso be
seen by comparing Figure 3 and Figure 4 that all overflows do not
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Figure 4: Overflow behavior to Figure 3 for vo with eigenfrequency test D = 12. Modulusis 256. (a) Pole without modulo reduction. (b)

Pole with modulo reduction.

result in unacceptable behavior since the filters are implemented
using exact Z s arithmetic. The filter behaves identicaly to a
non-recursive FIR realization. To compare this realization with
that previously found by the authors[10], it should be emphasized
that the algebraic integer realization has higher complexity (four
times as many comb sections) but has asingle complex poleandis
therefore a single passband filter and consequently does not need
an additional anti-aliasing filter.

3. CONCLUSION

The Hogenauer [6] idea of cascade integrator comb filter was
extended to bandpass-filters. Using a digital signal processing
schemewith algebraicintegers provides single passband frequency
sampling filter building blocks. Thesefilters are of low complexity
and are multiplier free, so that a wide selection of passband fre-
guenciesmay beimplemented without the high cost of anti-aliasing
filters as previously proposed [10].
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