
SELECTIVE BLOCK UPDATE OF NLMS TYPE ALGORITHMS

Thomas Schertler

Fachgebiet Theorie der Signale
Darmstadt University of Technology

schert@nesi.tu-darmstadt.de

ABSTRACT

Adaptive filters for the cancellation of acoustic echoes, as
applied in hands-free telephone sets, require about a thou-
sand coefficients and more to get a significant echo reduc-
tion. This leads to a very high computational effort and can-
not be realized on most low-cost DSPs.

One common proposition to decrease the computational
load is to update only a portion of the coefficients at a time.
This decreases not only the computational load but also the
convergence speed. To reduce this drawback, it has been
suggested that only the most significant coefficients be up-
dated. This improves the convergence speed considerably.
Unfortunately, it requires additional memory of twice the
filter length.

In our proposal, we present a modified version of the
mentioned algorithm which has almost the same adaptation
speed but consumes significantly less memory.

1. INTRODUCTION

Adaptive filters are very often used to cancel acoustical
echos. Due to the reverberation time of rooms (several hun-
dred milliseconds), a huge number of filter taps is required
to achieve sufficient echo reduction. Most echo cancellers
make use of the well-known NLMS algorithm which has a
rather low complexity [3]. Nevertheless, especially in real-
time implementations for consumer products, this complex-
ity may still be too high. Therefore, several algorithms with
reduced complexity, based on partial update of the coeffi-
cients, have been introduced.

The coefficients to be updated can be selected in several
different ways: the periodic NLMS algorithm [6] and other
partial update algorithms like the sequential NLMS [2] or
the sequential block NLMS for example are using a static
scheme to update some pre-defined coefficients of the fil-
ter vector. The reduction in complexity also accounts for
a reduction of convergence speed. In fact, by reducing the
number of coefficients updated in every sample period by a
certain factor, the adaptation performance in terms of con-
vergence speed decreases by approximately the same factor
in comparison to the conventional NLMS algorithm. This

can be an important drawback, especially for acoustic echo
cancellers, if insufficient convergence is noticeable.

Another algorithm tries to preserve the performance of
the regular NLMS algorithm by updating those coefficients
with the largest update [1]. The results obtained with this
algorithm are very close to the full update, but this dynamic
update scheme has a high demand for memory, namely
twice the filter length. Since low memory requirements can
be very important for commercial products, this can be a
crucial disadvantage for use in industrial hands-free tele-
phone sets.

In this contribution we present an algorithm based on
some ideas of [1] which is more convenient for real-time
implementations as used in commercial products. Instead of
selecting single filter coefficients for the update, it looks for
entire blocks of filter coefficients. By using this approach,
we lose some convergence speed but we reduce the costs
in terms of memory. The computational complexity of the
proposed algorithm can be adjusted to available processing
power and can be lower than [1].

2. DESCRIPTION OF CURRENT ALGORITHMS

Let N be the length of the filter vector andM the number
of filter taps to be updated ateach iteration. In order to
simplify the description,N=M shall be an integer, although
this is not necessary for an implementation. The coefficient
vectorw(k) and the excitation vectorx(k) of the adaptive
filter can be partitioned intoBc subdivisions of lengthBl:

w(k) = [w0(k); w1(k); : : : ; wN�1(k)]
T

= [wT

0 (k); w
T

1 (k); : : : ; w
T

Bc�1(k)]
T (1)

x(k) = [x(k); x(k � 1); : : : ; x(k �N + 1)]T

= [xT0 (k); x
T

1 (k); : : : ; x
T

Bc�1(k)]
T (2)

with

w
i
(k) = [wiBl

(k); : : : ; w(i+1)Bl�1(k)]
T

and

x
i
(k) = [x(k � iBl); : : : ; x(k � (i + 1)Bl + 1)]T :



First, we describe the sequential block NLMS algorithm
(seqB-NLMS) as an example of algorithms with a pre-fixed
partial update (M = Bl). Using the definitions above, the
sequential block NLMS can be denoted as:

w
i
(k+1) =

8>><
>>:

w
i
(k) + �

e(k)x
i
(k)

xT (k)x(k)

w
i
(k)

if ((k + i)modBc) = 0

otherwise
(3)

with the adaptation errore(k) = y(k)�wT (k)x(k) and the
step size parameter�. One block of coefficientsw

i
(k) is up-

dated at each iteration. The other blocks remain unchanged.
This decreases the computational load of the algorithm but
also cuts the speed of convergence by factorBc = N=M .
Since the update scheme is determined in a static way, the
overhead for this algorithm is only marginal.

Another way to reduce computational load without ex-
panding the convergence time by a factorBc is to update
only the most important coefficients or, in other words,
those coefficients with larger gradient components on the
error surface [1]. These coefficients are easy to detect by
sorting the magnitude values of the vectorx(k) and updat-
ing those coefficients associated with theM largest values
of the sorted list. This leads to the following equation, here
referred to as selective coefficient NLMS (selC-NLMS):

wi(k+1) =

8>>>><
>>>>:

wi(k) + �
e(k)xi(k)

xT (k)x(k)

wi(k)

if i belongs to the firstM
maxima ofjx(k)j

otherwise.
(4)

The sorting procedure that is used to find theM largest
magnitude values of the excitation vectorx(k) is a run-
ning ordering algorithm called SORTLINE [5]. Since there
is only one new magnitude value entering the observation
window and one value leaving it at each iteration, a spe-
cial sorting algorithm can be used which requires at most
2 log2N + 2 comparisons per iteration.

3. IMPLEMENTATIONAL ASPECTS AND COSTS
OF CURRENT ALGORITHMS

Table 1 shows the complexity of the original NLMS algo-
rithm with full update. The complexity is expressed in terms
of additions/subtractions, multiplications, data read/writes,
and memory requirements. The line “Initialization” means
preparing pointers or index registers for the convolution
wT (k)x(k) and for the coefficient update. The complex-
ity depends on the desired DSP and is denoted bys. Most
DSPs are able to compute at least one addition and multipli-
cation in parallel (MACinstruction). Some of them even pro-
vide memory transfers in a cycle together with arithmetic

add mul mov mem
Normalization 2 2 4 1
Calc.e(k) N N 2N�+ 2 2N
Initialization � � 2s �
Update N N + 1 2N�+ 2 �

Table 1: Complexity of NLMS algorithm

commands. The total complexity of the NLMS in terms of
clock-cycles is2N for the DSP 96000 (Motorola),3N for
the ADSP 2106x (Analog Devices), but5N 1 for the Pine
DSP (DSP Group) and DSP 16xx (Lucent Technology).

On most DSPs, memory accesses are very efficiently re-
alized for successive data values or data values with a fixed
distance. Those memory accesses are marked with an as-
terisk in the tables. Randomaccess of data values usually
produces overhead.

add mul mov mem
Normalization 2 2 4 1
Calc.e(k) N N 2N�+ 2 2N
Initialization � � 2s �
Update M M + 1 2M�+ 2 �

Table 2: Complexity of seqB-NLMS algorithm

The complexity of the seqB-NLMS algorithm and the
selC-NLMS are shown in table 2 and table 3. The sorting

add mul mov mem
Normalization 2 2 4 1
Calc.e(k) N N 2N�+ 2 2N
Initialization � � (M + 1)s �
Update M M + 1 2M + 2 �
Sorting 2 log2N + 2 2b(N�1)=2c 2N

Table 3: Complexity of selC-NLMS algorithm

algorithm SORTLINE in selC-NLMS requiresN memory
locations for the sorted list of absolute values. It adds at
most2 log2N +2 comparisons to the complexity and in the
worst case up toN � 1 memory transfers by deleting the
oldest value of the sorted list and inserting the new value at
its appropriate location [5]. The number of transfers can be
reduced tob(N � 1)=2c using a circular buffer. In order to
find the actual location of the excitation values and coeffi-
cients corresponding to theM largest absolute values, one
could either store links to these locations together with the
sorted list (doubles memory and transfers) or select them

1includes rounding due to fixpoint arithmetics



during the convolution ofx(k) andc(k) (addsN calcula-
tions of magnitude andN comparisons). In table 3, the first
possibilitywas chosen because the second seems to increase
the computational complexity too much.

4. SELECTIVE BLOCK UPDATE ALGORITHM

The proposed algorithm tries to combine the advantages
of the seqB-NLMS algorithm and the selC-NLMS. It di-
vides the excitation vector and the coefficient vector into
Bc blocks of lengthBl = N=Bc (see equ. 1 and 2). In-
stead of looking for theM largest magnitude values it se-
lectsMb = M=Bl blocks with the largest excitation power
xT
i
(k)x

i
(k) and adapts those blocks.

wi(k+1) =

8>>>><
>>>>:

w
i
(k) + �

e(k)x
i
(k)

xT (k)x(k)

wi
(k)

if i belongs to the firstMb maxima
of xT

i
(k)x

i
(k); i 2 (0; Bc � 1)

otherwise
(5)

By doing so, it preserves a large part of the conver-
gence speed of the selC-NLMS algorithm but also the
computational advantages of the seqB-NLMS. The excita-
tion power can be calculated recursively, adding2Bc addi-
tions/subtraction,Bc � 1 multiplications andBc memory
locations.

0 1 2 3 4 5 6 7 8 9
20 70 60 80 40 30 50 40 20

20
0

50
6

30
5

60
2

70
1

80
3

40
4

90

block power
block index

smalles value
of biggest M b

Figure 1: Sorting algorithm using HEAPSORT

The sorting of the block power values can be done using
the HEAPSORT algorithm[4]. In order to do so, we build
a heap of sizeMb and fill it sequentially with data records,
consisting of the block power value (sorting “key”) and the
block index number. Since all block power values change
at every new iteration, we have to build up the heap from
scratch in every sample period.

An example of HEAPSORT forMb = 7 andBc = 10
is shown in figure 1. The example demonstrates the sort-
ing algorithm before handling the block with index num-
ber 7. Since the topmost element of the heap is also its

smallest element, only one comparison is required to de-
cide whether the new element belongs to the heap or not.
If the new value is larger than the topmost element, at
most2blog2 (Mb + 1)c comparisons and the same amount
of memory transfers are required to rebuild the heap.

Since there areBc block power values, the complex-
ity in terms of comparisons and memory transfers is (in the
worst case)2Bcblog2 (Mb + 1)c and the memory require-
ments are2Mb as shown in table 4. Figure 2 demonstrates
the contrast between the raised memory requirements of the
selC-NLMS and the selB-NLMS.

add mul mov mem
Norm. 2Bc+2 Bc+1 4B�

c
+2 Bc+1

e(k) N N 2N�+ 2 2N
Init. � � (Bc+1)s �
Upd. MbBl MbBl+1 MbB

�

l
+ 2 �

Sort. Bc(1+2blog2Mb+1c) 2Bcblog2Mb+1c 2Mb

Table 4: Complexity of selB-NLMS algorithm

10
2

10
3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

filter length/[coefficients]

ad
di

tio
na

l m
em

or
y 

re
qu

ire
m

en
ts

Figure 2: Additional memory requirements due to partial
update; selC-NLMS (�), M = N=5; selB-NLMS (3),
Bl = 20; Mb = N=100

5. SIMULATIONS

Simulations have been carried out in order to demonstrate
and compare the performance of the existing algorithms
and the selB-NLMS. The simulations have been divided
into two groups: simulations with long filters (1200 coef-
ficients) using white gaussian noise as excitation and sim-
ulations with short filters (150 coefficients) using digitized
speech signals als excitation. The sampling frequency has



been 8 kHz for the excitation signal as well as for the mea-
sured room impulse responses.

0 1 2 3 4 5 6 7 8

x 10
4

−35

−30

−25

−20

−15

−10

−5

0

co
ef

fic
ie

nt
 e

rr
or

 p
ow

er
/[d

B
]

iterations

Figure 3: System mismatch, white gaussian noise, room im-
pulse response: 2044 taps, N=1200,�=1; seqB-NLMS (+),
M = 240; selB-NLMS (3), Bl = 20; Bc = 12; selB-
NLMS (2),Bl = 5; Bc = 48; selC-NLMS (�),M = 240;
NLMS (�), full update

Figure 3 shows the system mismatch in terms of coef-
ficient error power for white gaussian noise. The perfor-
mance loss of the selC-NLMS compared to the NLMS is
marginal. As expected, the selB-NLMS does not perform as
well as the selC-NLMS, because there are too much small
excitation values in each selected block. The smaller the
blocks are, the better the results (forBl = 1, the selB-
NLMS and the selC-NLMS are identical). On the other
hand, the smaller the blocks are, the bigger the computa-
tional load.

In figure 4, speech (male and female speakers) has been
used as excitation. In order to reduce the effects of insta-
tionarity of the speech data, the figure shows an ensemble
average of 15 independent simulations with different speech
signals. The loss of convergence speed of the selC-NLMS
and the selB-NLMS compared to the full update is smaller
with correlated input. This is an expected result, because
speech data has a lot of periods without sufficient excitation
(like pauses between words). Thus, by stopping the adapta-
tion of blocks belonging to those periods, the convergence
speed gets not decreased.

6. CONCLUSIONS

In this paper, an algorithm with low memory requirements
has been presented that updates only selected portions of the
filter vector. In contrast to the selC-NLMS, its additional
memory requirements are low, so that it is better suited for
real-time implementations on low-cost DSPs with restricted

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−25

−20

−15

−10

−5

0

iterations

co
ef

fic
ie

nt
 e

rr
or

 p
ow

er
/[d

B
]

Figure 4: System mismatch, speech, ensemble average over
15 simulations, room impulse response: 151 taps, N=150,
� = 0:3; seqB-NLMS (+),M = 24; selB-NLMS (3),Bl =
6; Bc = 4; selB-NLMS (2), Bl = 3; Bc = 8; selC-NLMS
(�),M = 24; NLMS (�), full update

resources. Since the presented selB-NLMS is a trade-off
between selC-NLMS and seqB-NLMS, one can implement
a long adaptive filter and adjust the parameters of the al-
gorithm according to the requirements for memory, perfor-
mance and load. The performance of the selB-NLMS has
been demonstrated by simulations.

7. REFERENCES

[1] T. A BOULNASR AND K. M AYYAS. Selective coeffi-
cient update of gradient-based adaptive algorithms. In
“Proc. ICASSP 1997, M¨unchen, Germany”, pp. 1929–
1932 (1997).

[2] S. C. DOUGLAS. Adaptive filters employing partial up-
dates.IEEE Trans. on Circuits and Systems44(3), 209–
216 (Mar. 1997).

[3] S. HAYKIN . “Adaptive Filter Theory”. Informa-
tion and System Sciences Series. Prentice-Hall Interna-
tional, Inc., 3rd ed. (1996).

[4] D. E. KNUTH. “Sorting and Searching”, vol. 3 of “The
Art of Computer Programming”. Addision-Wesley, 1st
ed. (1973).

[5] I. PITAS. Fast algorithms for running ordering and
max/min calculation.IEEE Trans. on Circuits and Sys-
tems36(6), 795–804 (June 1989).

[6] J. TREICHLER, J. JOHNSON, AND M. G. LARIMORE.
“Theory and Design of Adaptive Filters”. Wiley-
Interscience, New York (1987).


