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ABSTRACT

This paper presents a new approach to deriving statistically
optimal weights for weighted subspace fitting (WSF) algo-
rithms. The approach uses a formula called a “subspace per-
turbation expansion,” which shows how the subspaces of a
matrix change when the matrix elements are perturbed. The
perturbation expansion is used to derive an optimal WSF al-
gorithm for estimating directions of arrival in array signal
processing.

1. INTRODUCTION

A variety of parameter estimation problems in signal pro-
cessing and system identification can be solved using “sub-
space” methods. These methods rely on the fact that a rank
deficient matrix can be formed from noise-free data. Fur-
thermore, information about the signal or system parame-
ters is embedded in the column space and/or row space of
this matrix. With noisy data, the appropriate subspace is es-
timated, usually with the singular value decomposition, and
the parameters are extracted from the estimated subspaces.

In [7], a formula is derived which shows how much of
a subspace perturbation is induced by additive noise in the
data. This formula is called a “subspace perturbation expan-
sion.” In this paper, this expansion is used to derive an opti-
mally weighted subspace fitting algorithm for estimating di-
rections of arrival in array signal processing. The resulting
cost function is different than the original WSF cost func-
tion derived in [8]; however, the two cost functions yield the
same performance.

Weighted subspace fitting was introduced as a method
for parameter estimation in [8, 5]. All of the previous work
on weighted subspace fitting uses the asymptotic (in the
number of data snapshots) distribution of sample eigenvec-
tors to derive statistically optimal weights. In contrast, the
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subspace perturbation expansion is based on a data matrix
of finite size. Nevertheless, it will be seen that for the DOA
problem, the subspace perturbation approach yields results
that are essentially identical to those obtained by the asymp-
totic approach. The subspace perturbation approach may
have advantages in other applications in which the data ma-
trix is structured (e.g. Hankel structured data matrices in
signal modeling and system identification).

Throughout this paper, the superscript ‘T’ refers to the
matrix transpose, the superscript ‘H’ refers to the complex-
conjugate transpose, and the superscript ‘*’ refers to the
complex conjugate.

2. SUBSPACE PERTURBATION EXPANSION

LetY be anm�n matrix of rankp, wherep < min(m;n).
The singular value decomposition ofY can be partitioned
as follows:

Y = [U1 U2 ]
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We are interested in the subspaces col(U1) and col(U2),
where col(A) denotes the column space of the matrixA.
LetY be perturbed as follows

~Y = Y +N:

The SVD of ~Y can be partitioned as follows:

~Y = [ ~U1
~U2 ]
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It is shown in [7] that we can find an orthonormal basis for
col(~U1) in the following form

~X1 = (U1 +U2P)(I+P
H
P)�

1

2 (1)

whereP is a coefficient matrix. In addition, an orthonormal
basis for col(~U2) can be found in the following form:

~X2 = (�U1P
H +U2)(I+PP

H )�
1

2 : (2)



The coefficient matrixP in (1) and (2) can be expressed
as matrix series

P = 0+P(1) +P(2) + � � � (3)

where the superscript(j) refers to a matrix product contain-
ing j factors of the perturbation matrixN. It is shown in [7]
that

P
(1) = UH

2 NV1�
�1
1 : (4)

Thus, using (2), the first-order expression for a basis for the
perturbed subspace col(~U2) is

~X
(1)
2 = �U1P

(1)H +U2:

To first order, this basis is orthonormal. A formula forP(2)

is available in [7].

3. WEIGHTED SUBSPACE FITTING

In this section we consider the direction-of-arrival (DOA)
estimation problem in array signal processing and show how
to use the subspace perturbation expansion to derive statis-
tically optimal weights in a subspace fitting algorithm. We
begin with the standard data model for narrowband DOA
estimation. The model for the noise-free signal is

Y = A(�0)S

whereY ism� n,A(�0) ism� r, andS is r � n. In this
application,m is the number of sensors,n is the number
of snapshots of array data, andr is the number of narrow-
band signals impinging on the array. The vector of possible
DOAs is� and�0 denotes the actual DOAs. The SVD ofY
is

Y = [U1 U2 ]
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whereU1 hasr columns. The crucial observation about
subspaces is that columns ofU1 andA(�0) span the same
subspace, and therefore columns ofU2 are orthogonal to
columns ofA(�0).

The observed (noisy) data is

~Y = Y +N

where the elements ofN are taken to be zero mean i.i.d.
complex Gaussian random variables with variance�2 (real
and imaginary parts are uncorrelated). The SVD of~Y is

~Y = [ ~U1
~U2 ]
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where ~U1 hasr columns. We assume that the number of
signalsr has been correctly estimated.

The subspace-fitting criterion used in this paper is based
on the fact that, in the noise-free case1,

U2U
H
2 A(�0) = 0:

With noisy data the previous expression will not equal zero
and we look for the parameter vector�̂ that minimizes the
equation error:

�̂ = argmin
�

k~U2
~U
H
2 A(�)k2W (5)

where the norm is defined as

k � k2W = vec(�)HW vec(�)

andW is a weight matrix. We define

C(�)
def
= (~U2

~U
H
2 A(�)); andc(�)

def
= vec(C(�)): (6)

It will be shown that, to first order,c(�) is a zero-mean
Gaussian random vector. Thus, the optimal weight matrix
to use in (5) is [1]

W = [E(c(�0)c
H (�0)]

y

wherey denotes pseudo inverse. We will deal with the fact
thatW is a function of�0 at the end of this section.

Using the perturbation expansion, the projection matrix
~U2
~U
H
2 can be written as follows:
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H
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H)H :

ApproximatingP up to first order and using the fact that,
for any matrixM whose norm is less than one,
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we have
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whereP(1) is given by (4) and ‘
1
=’ means “equal up to first-

order perturbation terms.” Substituting (7) and (4) into (6)
yields

c(�0)
1
= vec(�U2U

H
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We can neglect the minus sign and use the properties of Kro-
necker products [2] to write

c(�0) = [(V1�
�1
1 U

H
1 A(�0))

T 
 (U2U
H
2 )]vec(N)
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= Bn:
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1We use the projection matrixU2U
H

2
instead of justUH

2
because the

perturbation expansion gives a basis for the subspace col(~U2), nota repre-
sentation for individual singular vectors.



Then
E[c(�0)c

H (�0)] = �2
BB

H def
= R:

To simplify the expression for the covariance matrix, con-
sider the following SVD:

[V1�
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Substituting this into (8) and using the properties of Kro-
necker products yields
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We can simplify this expression by using (9) and noting that
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Using this equation and the fact that

kMk2F = trace(MMH)

we can rewrite (10) as
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This is the optimally weighted criterion that we want to min-
imize. However, it depends on the true parameter vector�0

as well as the SVD of the noise-free signal matrix. In or-
der to get a computable cost function we use~U1 and ~U2 in
place ofU1 andU2. In place of�1 we use

�̂1 = (~�
2

1 � n�̂2
I)0:5

where�̂2 is the average of the squared singular values in
~�2. In place of�0 we simply use the�. Thus, the DOAs are
estimated by solving the following optimization problem:

�̂ = argmin
�

k~UH
2 A(�)(~UH

1 A(�))�1
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2
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The gradient for this cost function is derived in [7].

4. EXAMPLE

The array used in this example is a uniform linear array of
m = 10 sensors with half wavelength spacing [4]. For such
an array, the matrixA(�) has the form

A(�) = [a(!1) a(!2) � � � a(!r) ]

where

a(!i) = [ 1 ej!i ej2!i � � � ej(m�1)!i ]
H
;

!i = � sin �i; i = 1; � � � ; r:
(13)

The noisy data is generated as

~Y = A(�0)S+N

where each column ofS consists of complex-valued i.i.d.
Gaussian random variables with variance�2

S(i) (we con-
sider uncorrelated sources). The elements of the observa-
tion noise matrixN are also complex-valued i.i.d. Gaussian
random variables, uncorrelated with those inS, with vari-
ance�2. The signal-to-noise ratio in dB for theith source
is defined to be

SNRi = 10 log10
�2
S(i)

�2 :
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Figure 1: RMS error of̂�1 vs. SNR

In the first example the data were generated withr = 2
sources. The first source was at an angle of�3� relative to
the array broadside and the second source was at an angle
of 2�. The number of snapshots (columns ofS) was fixed
atn = 10. The SNR was varied from 3 to 11 dB. Below 3
dB outliers begin to appear. Fig. 1 shows the RMS error for
estimates of the DOA at�3� (the other DOA estimate be-
haves similarly). Initial estimates were obtained using ES-
PRIT [6, 3]. The estimates labeled ‘WSF1’ were obtained



using the weighted subspace fitting approach of Viberg and
Ottersten [8]. The estimates labeled ‘WSF2’ were obtained
by minimizing (12). The CR bound for this problem is de-
rived in [5]. This bound is asymptoticn, the number of
data snapshots. That is, a statistically efficient method will
achieve this bound whenn is large enough. From Fig. 1 we
see that the bound is nearly attained for 10 snapshots.
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Figure 2: RMS error of̂�1 vs. number of snapshots

The second example is the same as the first except that
the SNR is fixed at 3 dB and the number of snapshots is
varied from 10 to 50. As seen in Fig. 2, when the number
of snapshots exceeds 30 both WSF1 and WSF2 essentially
achieve the CR bound. The third example is the same as the
first except that the SNR is fixed at 5 dB and the source sep-
aration is varied by changing�2 from 1� to 7�. The results
are shown in Fig. 3.
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Figure 3: RMS error of̂�1 vs. source separation

5. CONCLUSIONS

A subspace perturbation expansion was presented as a new
approach to deriving optimal weights for a weighted sub-
space fitting algorithm. When applied to the DOA estima-
tion problem, the performance of this new weighted sub-
space fitting (WSF) algorithm achieves the CR bound and
is essentially identical to the WSF algorithm of Viberg and
Ottersten which is based on the asymptotic distribution of
sample eigenvectors. In this paper, only the first-order per-
turbation expansion was used. The second-order expansion
from [7] could be used to derive a WSF algorithm that could
have better performance than the existing WSF algorithms.
The precise relationship between the asymptotic approach
and the subspace perturbation expansion approach is a topic
for future investigation.
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