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ABSTRACT

Voice conversion is defined as modifying the speech signal of one
speaker (source speaker) so that it sounds as if it had been pro-
nounced by a different speaker (target speaker). This paper de-
scribes a system for efficient voice conversion. A novel mapping
function is presented which associates the acoustic space of the
source speaker with the acoustic space of the target speaker. The
proposed system is based on the use of a Gaussian Mixture Model,
GMM, to model the acoustic space of a speaker and a pitch syn-
chronous harmonic plus noise representation of the speech signal
for prosodic modifications. The mapping function is a continu-
ous parametric function which takes into account the probabilistic
classification provided by the mixture model (GMM). Evaluation
by objective tests showed that the proposed system was able to re-
duce the perceptual distance between the source and target speaker
by 70%. Formal listening tests also showed that97% of the con-
verted speech was judged to be spoken from the target speaker
while maintaining high speech quality.

1. INTRODUCTION

Voice conversion is a subject of considerable importance. Applica-
tions include text-to-speech synthesis based on acoustic unit con-
catenation, interpreted telephony, and very low rate bit speech cod-
ing. In speech synthesis, voice conversion is a simple and efficient
way to create the desired variety of voices while avoiding record-
ing of different speakers. Voice conversion is useful in interpreted
telephony where it is important, for the naturalness of the conver-
sation, that the characteristics of each speaker's voice are to be
maintained. Maintenance of speaker's characteristics is also im-
portant in the context of high-quality very low rate speech coding
based on text-to-speech synthesis and speech recognition.

The voice conversion problem has recently attracted a lot of re-
search effort. An approach to this problem was the mapping code-
book of Abeet al. [1]. The mapping codebook method is based
on a discrete description of the spectral parameters spaces of both
speakers obtained through Vector Quantization (VQ). A variation
of this basic scheme is the fuzzy vector quantization approach de-
scribed in [2]. In [3], a different approach is proposed which is
based on the interpolation between the spectra of several speakers
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to determine the converted spectrum. Other recent works suggest
that a possible way to improve the quality of the converted speech
consists of modifying only some specific aspects of the spectral
envelope, such as the location of the formants [4],[5]. Spectral
conversion techniques have been also proposed for speaker/envi-
ronment adaptation that map speech features of the same speaker
between clean and noisy acoustic spaces [6], [7].

This paper describes a new system for voice conversion. Com-
pared to the methods mentioned above, the main contributions of
the proposed system are: 1)Probabilistic classification: the acous-
tic space of a speaker is described by a parametric Gaussian mix-
ture model, GMM, which, in contrast with VQ-based methods,
provides continuous and smooth classification indexes avoiding
unnatural discontinuities. 2)Mapping Function: a novel function
is proposed to associate the acoustic space of the source speaker
with the acoustic space of the target speaker. The proposed func-
tion makes use of the complete description of each component
of the GMM, considering these components as complete clusters
rather than as single vectors, as is the case in VQ approaches.
3)High-quality prosodic modifications: a pitch synchronous har-
monic plus noise (HNM) representation of the speech signal is
used for prosodic modifications. Objective tests and formal lis-
tening tests were carried out and the results show that by using the
proposed conversion system effective voice conversion is achieved.

The paper is organized as follows. First, the probabilistic clas-
sification and the proposed mapping function is presented. Next,
the front-end analysis/synthesissystem, HNM, is briefly described.
This is followed by the implementation of the proposed conversion
system. Finally, results from a formal listening test as well as from
an objective test are presented to support our conclusions.

2. PROBABILISTIC CLASSIFICATION AND MAPPING
FUNCTION

In this section, we assume that the available data consists of two
sets of pairedp-dimensional spectral vectorsfxt; t = 1; : : : ; ng
(source) andfyt; t = 1; : : : ; ng (target) with the same lengthn.

2.1. Gaussian mixture model

The first step consists in fitting a gaussian mixture model to the
source vectorsfxtg. The modeling of the acoustic space of a
speaker by a Gaussian mixture model (GMM) has been illustrated
by recent studies [8] to be efficient for text-independent speaker
recognition. The GMM assumes that the probability distribution



of the observed parameters takes the following parametric form
[9]
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In (1) the terms�i are normalized positive scalar weights. A fun-
damental assumption of the GMM states that the observation vec-
tors fxtg are independent of one another. The mixture weights
f�ig represent the statistical frequency of each class in the obser-
vations. The conditional probability that a given observation vec-
tor x belongs to an acoustic classCi of the GMM is easily derived
from (1) by direct application of Bayes' rule as

P (Cijx) =
�iN(x;�i;�i)

mX
j=1

�jN(x;�j ;�j)

(3)

The parameters of the GMM are estimated from the set of source
vectorsfxtg using the Expectation-Maximization (EM) algorithm
[10]. An important implementation issue associated with the EM
algorithm is its initialization. In this study, the EM algorithm is
initialized by use of a standard binary splitting VQ procedure [11]:
the weight, mean vector and covariance matrix of each component
are initialized independently using the clusters obtained by VQ of
the source vectorsfxtg.

2.2. Mapping function

In the limit-case where the GMM is reduced to a single class and
assuming that the source vectorsxt follow a Gaussian distribu-
tion N(x;�;�) and that the source and target vectors are jointly
Gaussian, the minimum mean square error (mmse) estimate of the
target vector after observingx is given by [12](p. 325)

E[yjx = xt] = � + ��
�1(xt ��); (4)

whereE[] denotes expectation, and� and� are respectively the
mean target vector

� = E[y];

and the cross-covariance matrix of the source and target vectors

� = E[(y � �)(x��)T ];

where the superscriptT denotes transposition. It was decided to
extend this result to the GMM by weighting terms that are anal-
ogous to the Gaussian conditional expectation. It seems logical
to choose as weighting terms the conditional probabilities that the
vectorxt belongs to the different classesCi (Eq. (3)). Thus, the
proposing mapping function has the following parametric form:
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The parameters of the mapping function are computed by least
squares optimization on the learning data so as to minimize the
total squared conversion error

� =

nX
t=1

jjyt � F(xt)jj
2 (6)

In this paper, the covariance matrices of the GMM�i and the
conversion matrices�i are full matrices. The mapping function
will be referred to asfull mapping.

3. THE HARMONIC PLUS NOISE MODEL, HNM

The voice conversion system is based on the use of the Harmonic
+ Noise Model (HNM) which allows high-quality modifications of
speechsignals [13]. HNM performs a pitch-synchronousharmonic
plus noise decomposition of the speech signal. For voiced sounds,
the speech spectrum is divided into a low and a high band delimited
by the so-called maximum voiced frequency. The low band of the
spectrum (below the maximum voiced frequency) is represented
solely by harmonically related sine waves. The upper band is mod-
eled as a noise component modulated by a time-domain amplitude
envelope. Due to the pitch-synchronous scheme of HNM, time-
scale and pitch-scale modifications are quite straightforward[13].

4. IMPLEMENTATION OF THE CONVERSION SYSTEM

HNM decomposes speech into a harmonic and a noise part so the
conversion procedure could be different for each part. There are
several reasons for this decision. Spectral envelopes associated
with the noise part exhibit large variations and the corresponding
GMM components are characterized by large variances and sig-
nificant overlap. Moreover, the contribution of the noise part to
the individuality of the speaker was found to be far less important
than that of the harmonic part. As a consequence, the conversion
methodology presented in the previous section is only applied to
the transformation of the harmonic part of the signal. For the con-
version of the noise part two corrective filters are defined; one for
voiced and another for unvoiced frames.

4.1. Conversion of the noise part

The conversion of the noise part is simply achieved by the use of
two different correction filters (one for voiced frames and one for
unvoiced frames). These correction filters, implemented as 6th or-
der all-pole filters, model the difference between the average noise
spectra of the source and target speaker.

4.2. Conversion of the harmonic part

For the conversion of the harmonic part an efficient parameter-
ization of the spectral envelope is desirable. Because the har-
monic amplitudes will be computed from the converted spectral
envelopes, it is desirable to use a spectral representation method
that leads to an envelope that passes through the measured har-
monic amplitudes. Such a representation has already been devel-
oped in [14] where a regularization technique has been proposed to
achieve a well-behaved spectral envelope using discrete cepstrum
coefficients. For a better fit in low frequencies, the harmonic fre-
quencies are converted to a Bark frequency scale. The cepstral



parameters obtained are similar to the usual Mel-Frequency Cep-
strum Coefficients (MFCC) except for the fact that they are ob-
tained from the minimization of a discrete set of frequency con-
straints.

The learning procedure for the conversion of the harmonic part
is depicted in Fig. 1. Note that for the training of the conversion
function, the source and target signals are analyzed with a fixed
10ms frame rate in order to allow time-alignment by theDynamic
Time Warping, DTW, algorithm. The optimization of the conver-
sion function (rightmost block in Fig. 1) makes use of the time-
aligned spectral envelopesfxtg (source) andfytg (target) as well
as the parameters of the GMM as estimated by the EM algorithm.
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Figure 1: Block diagram of the learning procedure.

4.3. The conversion system

Once the spectral conversion function has been estimated, the voice
transformation is performed as indicated in Fig.2. Note that for
voice transformation, the HNM analysis is performed pitch-syn-
chronously because this mode enables higher quality time-scale
and pitch-scale modifications [13]. The noise part is modified
with two different fixed filters (so called “corrective filters”) de-
pending on whether the frame is voiced or not. In the present
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Figure 2: Block diagram of the voice conversion system.tia: anal-
ysis time-instants,tis: synthesis time-instants.

system, we do not consider the problem of matching the prosodic
characteristics of both speakers. As a consequence, the prosodic
modifications performed are merely intended to match the average
fundamental frequency and articulation rhythm of both speakers.

5. RESULTS AND DISCUSSION

The proposed conversion system has been tested on the conversion
task between two male speakers. The speech databases have been
provided by the Centre National d' Etudes des T´elécommunications
(CNET), which cover all the diphones of the French language. The
sampling frequency was16kHz. Approximately20000 voiced
vectors have been obtained per speaker (3:5 minutes of speech).
The frame size for the asynchronous HNM analysis was10 msec
and the cepstrum order was20. In the present study, the first
cepstrum coefficientc0 was omitted as a form of energy normal-
ization. In practice, it was found that it is not advisable to in-
cludec0 in the training parameters because it biases the classi-

fication achieved by the GMM. The spectral parameters are thus
20-dimensional vectors which contain the discrete MFCC coeffi-
cientsc1, c2, : : : , cp. For a simplification of HNM, the maximum
voiced frequency was fixed at a constant value of4kHz. An in-
dependent corpus of about1:5 min (with more than one minute of
voiced speech) was used to evaluate the performance of the pro-
posed method.

5.1. Objective test

In this section results from an objective test are presented and
theFull mappingfunction is compared with the VQ-mapping ap-
proach [1]. For the objective test, the rms log-spectral distortion is
computed using the warped frequency scale as

drms
2 = 2

pX
k=1

[c1(k)� c2(k)]
2 (7)

Fig. 3 compares VQ-mapping (Fig. 3-(a)) andfull mapping(Fig. 3-
(b)) based on the frame rms log spectral distortion measured for
one second of natural speech. Note that0dB value refers to theini-
tial averagedistortion between the source and target envelopes and
their frame based distortion is represented by solid line. Full map-
ping makes it possible to achieve an average distortion reduction
of 5dB while the average distortion reduction for VQ-mapping is
4dB. It is also worth noting that the reduction of the log spectral
distortion by VQ-mapping is very non uniform (see Fig. 3-(a)) in
contrast withfull mappingwhere the reduction is almost always
greater than2dB (see Fig. 3-(b)). The VQ-mapping system has
also been used with a codebook of512 centroids. However, the
average distortion reduction was slightly higher than4dB.
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Figure 3: Normalized warped rms log-spectral distortion in dB for
100 consecutive frames of voiced speech.(a): Conversion by VQ-
mapping (128 centroids).(b) Full mapping (128 GMM). Dash-dot
line: distortion between source and target envelopes; Solid line:
distortion between converted and target envelopes.

5.2. Formal listening test

The proposed conversion system has also been assessedduring for-
mal listening tests on sentences uttered by the source and the tar-
get speakers. To evaluate only the spectral conversion aspect the
prosody of the source speaker has been altered (using HNM) to
match as closely as possible the prosody of the target speaker. The
evaluation has been carried out on approximately12 seconds of
continuously uttered sentences using a16 GMM and a64 GMM.
Two listening tests have been designed; XAB test, and opinion
test. Twenty listeners have been participated in each of these ex-
periments.



5.3. XAB test

In the XAB test, A and B were either the target or the source
speaker and X was either the prosody-only modified speech, the
16 GMM, or the64 GMM converted speech. Subjects were asked
to select either A or B as being most similar to X. Table 1 sum-
marizes the results from this test giving the percentage of correct
answers; the converted/modified speaker is recognized as the tar-
get speaker. For the first three columns of the Table 1 speakers
A and B uttered the same sentence which was different from the
sentence uttered by X, while for the last column of the table all
speakers uttered the same sentence. It is worth noting from Table
1 the difference in score between prosody-only modification and
16 GMM. The score continues to increase as the number of GMM
parameters increases and the score becomes higher when X, A and
B utter the same sentence (easier task for the listeners).

PO 16 GMM 64 GMM 64 GMM(2)
Correct 18% 83% 88% 97%
answers

Table 1: Results from the XAB test. PO stands forprosody only
modification.

5.4. Opinion test

To evaluate the overall performance of the proposed method an
opinion test was designed. Pairs of speech signals including all
possible combinations of original speaker, target speaker, “prosodic
modified” speaker and converted speaker using16 and64 GMM
components were presented to the listeners. Different sentences
were used to make these pairs. Listeners were asked to rate the
similarity of each pair of speakers on a scale with ten values be-
tween0 for “identical” and9 for “very different”. Fig.4 presents
the results from this test. The symbols used in this figure stand
for the distances: “TT”, target-target, “SS”, source-source, “M2”,
converted speaker using64 GMM components-target, “M1”, con-
verted speaker using16 GMM components-target, “PT”, prosodic
modified speaker- target and “ST” source-target. For each of the
distances the median value is given (noted by “x”) as well as the
variation of the decisions using as estimator the mean absolute
deviation rather than the standard deviation. This figure clearly
shows the efficiency of the proposed method and confirms the re-
sults of the first test.
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Figure 4: Results form the opinion test.

6. CONCLUSIONS

This paper has presented a voice conversion system based on prob-
abilistic classification and the Harmonic plus Noise Model, HNM.
The proposed system has been evaluated by objective and formal

listening tests. The results show that the proposed mapping func-
tion which takes into account the probabilistic classification pro-
vided by the mixture model (GMM) is more robust and efficient
than methods based on VQ. The proposed system is able to reduce
the perceptual distance between the source and target speaker by
70%. Formal listening tests also show that97% of the converted
speech is judged to be spoken from the target speaker.
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