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ABSTRACT

Discriminative model combination is a new approach in the field
of automatic speech recognition, which aims at an optimal integra-
tion of all given (acoustic and language) models into one log-linear
posterior probability distribution.
As opposed to the maximum entropy approach, the coefficients of
the log-linear combination are optimized on training samples us-
ing discriminative methods to obtain an optimal classifier.
Three methods are discussed to find coefficients which minimize
the empirical word error rate on given training data:

� the well-known GPD-based minimum error rate training
leading to an iterative optimization scheme

� a minimization of the mean distance between the discrim-
inant function of the log-linear posterior probability distri-
bution and an “ideal” discriminant function and

� a minimization of a smoothed error count measure, where
the smoothing function is a parabola.

Latter two methods lead to closed-form solutions for the coeffi-
cients of the model combination.
Experimental results show that the accuracy of a large vocabulary
continuous speech recognition system can be increased by a dis-
criminative model combination, due to a better exploitation of the
given acoustic and language models.

1. INTRODUCTION

Given the posterior distribution�(kjx), the decision rule that re-
sults in a mimimum number of classification errors is the so-called
Bayes’ decision rule. For a given observationx of unknown class
membership, find the classk(x) such that:

8k0 = 1; :::; K; k0 6= k : log �(kjx)� log �(k0jx) � 0: (1)

The valuesg(x; k; k0) = log(�(kjx)=�(k0jx)) in (1) describe
the class boundaries and are referred to as discriminant functions
[1],[2]. If continuously spoken sentences are recognized the obser-
vation is a sequence of feature vectorsxT1 = (x1; : : : ; xT ), which
has to be classified into a word sequencewS

1 = (w1; :::; wS).
However, the true posterior distribution�(wS

1 jx
T
1 ) is unknown,

since it describes the natural speech communication process.
Therefore�(wS

1 jx
T
1 ) has to be approximated by a model distribu-

tion
p(wS

1 jx
T
1 ).

A widely used training criterion for the distributionp is the max-
imum likelihood criterion. The assumption is that we know the
functional form of the probability distributionp, but not the pa-
rameters. Using the maximum likelihood criterion the parameters
are estimated on training samples. The resulting distributionp is
then “plugged in” the Bayes’ decision rule: For a given observa-
tionxT1 of unknown class membership, find the classwS

1 (x
T
1 ) such

that:

8w0S
0
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1 : log p(wS
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T
1 )� log p(w0S

0

1 jxT1 ) � 0: (2)

Rewriting the discriminant functiong
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0
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0
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0
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(3)

we obtain the well-known decomposition ofp into a language
model probabilityp(wS

1 ) and an acoustic-phonetic likelihood
p(xT1 jw

S
1 ). Sincep typically deviates from the true distribution

�, the decision rule (3) will deviate from the Bayes’ decision rule,
thus leading to a suboptimal classifier. To overcome this limitation
discriminative methods can be applied [6],[7]. The goal of dis-
criminative parameter optimization is to be able to correctly dis-
criminate the observations rather than to fit the distributions to the
observed data. The most simple example for the discriminative ap-
proach is the optimization of the so-called language model factor
� of the discriminant function:

g(xT1 ; w
S
1 ; w
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= log[p(wS
1 )
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S
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0
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(4)

Experiments [5] show that a value� with � 6= 1 gives a minimum
word error rate. The deviation from the value� = 1 is caused
by the deviation of the language model probabilityp(wS

1 ) and the
deviation of the likelihoodp(xT1 jw

S
1 ) from their “true” values.

Following our basic idea we generalize the discriminant function
(4). Let us assume that we are givenM different acoustic-phonetic
and language modelspj(wS

1 jx
T
1 ); j = 1; : : : ;M . These models

are log-linearly combined into a distribution of the following form:

p�
f�g

(wS
1 jx

T
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P
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�j log pj(w

S
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T
1 )
	

(5)



The coefficients� = (�1; :::; �M)tr can be interpreted as weights
of the modelspj within the model combination (5). The value
C(�) is a normalization factor. As opposed to the maximum en-
tropy approach [3],[4], which leads to a distribution of the same
functional form, the coefficients� are optimized with respect to
the decision error rate of the discriminant function (6)
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0
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=
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0
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�

(6)

Note that the discriminant functions in (3) and (4) are special cases
of the discriminant function (6). This new approach will be called
“Discriminative Model Combination”.
In the following it will be shown that a discriminative model com-
bination allows for the integration of any model into a decoder,
since the weight�j of the modelpj within the combination de-
pends on its ability to provide information for correct classifica-
tion.

2. DISCRIMINATIVE MODEL COMBINATION

Three methods are discussed to find coefficients�, which aim at
minimizing the empirical word error rate on given training data:

� The well-known GPD method (’Generalized Probabilistic
Descent’ [6]) for minimizing the smoothed empirical error
rate of the distributionp�

f�g
(kjx) on training data.

� A minimization of the mean distance between the discrimi-
nant function (6) and an “ideal” discriminant function. This
method leads to a closed-form solution for�.

� A minimization of a smoothed error count measure, where
the smoothing function is a parabola.

First the utilized notations are defined:

� Each word sequencewS
1 is interpreted as a classk, each

utterancexT1 is interpreted as an observationx.

� The training data are denoted by(xn; knr); n = 1; :::; N;
r = 0; :::; K, whereN is the number of acoustic training
samplesxn, kn0 is the correct class of observationxn, and
knr; r = 1; :::; K are the competing classes ofkn0.

� The valueL(knr; kn0) is the Levenshtein-distance between
the rival word sequenceknr and the correct word sequence
kn0, i.e. the number of errors contained in the hypothesis
knr

2.1. Minimum Error Rate Training

The Generalized Probabilistic Descent (GPD) algorithm can be ap-
plied to minimize the smoothed empirical error rateL(�):

L(�) =
1

N

NX
n=1

`(xn; kn0;�) (7)

on given training data [6].̀ (xn; kn0;�) is a smooth misclassifi-
cation function of the observationxn:

`(xn; kn0;�)
�1 = 1 +

A �

0
BBB@ 1

K

KX
r=1

e

(
��L(knr;kn0) log

p�

f�g
(kn0jxn)

p�

f�g
(knrjxn)

)1
CCCA

�B
�

(8)

whereA > 0; B > 0; � > 0 have to be adjusted properly. This
leads to following iterative scheme to compute the coefficients�j
with stepsize": For j = 1; : : : ;M

�
(0)
j = 1 (9)

�
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�
(I)
j + "
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(10)

!(n; r)(I) =
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p��
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(I)
M )tr

From the obtained equation we can see, that the values�j are
changing from iteration to iteration by a weighted sum of the dis-
criminant functionlog

pj(kn0jxn)

pj(knrjxn)
.

2.2. Towards A Closed-Form Solution

Since the discriminant function describes the class boundaries it
can be argued reasonable to compute values�j which minimize
the mean squared distance

D(�) =
1
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(11)

between the discriminant function (6) and the “ideal” discrimi-
nant functionf(L(knr; kn0)) on the training data, wheref(:) is a
squashing function andL(knr; kn0) is the Levenshtein-distance
between the rival word sequenceknr and the correct word se-
quencekn0.
OptimizingD(�) by taking the derivatives for the values�j we
arrive at the following matrix equation for�.

� = Q�1P; (12)

with
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�
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�
f(L(knr; kn0));

(i = 1; :::;M): (13)

Note, thatQ can be interpreted as anM �M autocorrelation ma-
trix of the discriminant functions of theM given models.
P can be interpreted as correlation vector between the discriminant
functions of theM given models and the squashed Levenshtein-
distancef(L(knr; kn0)).
Thus the weight�j of a model within the model combination de-
pends upon the correlation of its discriminant function to
f(L(knr; kn0)) and to the discriminant functions of allM models.

2.3. A Closed-Form Solution By Minimization Of A
Smoothed Error Count Measure

Define the empirical error rateE:

E(�) =
1

KN
�

NX
n=1

L(argmax
knv

0
@log
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f�g
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0
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p�
f�g

(knvjxn)

p�
f�g

(kn0jxn)

1
A);

(15)

This measure equals the classification error rate obtained on the
training data by applying the discriminant function (6).
To include all rival hypotheses into the optimization and to get a
differentiable cost function, the�-function in (15) is substituted by
a smooth 0-1 funtionS(x)

E(�) =
1

KN

NX
n=1

KX
r=1

L(knr; kn0) �

S

0
@log

p�
f�g

(knrjxn)

p�
f�g
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1
A :

(16)

The contribution of each of the rival hypotheses to the overall
smoothed error rate depends on the functional form of S and on

the value of the discriminant function for this hypothesis.
To normalize the values of the discriminant function we impose as
additional constraint

MX
j=1

�j = 1 (17)

A possible choice for the smooth 0-1 functionS(x) for �B <
x < A;A > 0; B > 0 is the following parabola :

S(x) =
�
x+B

A+B

�2
(18)

The valuesA;B should be chosen such that

�B < log
p�

f�g
(knrjxn)

p�

f�g
(kn0jxn)

< A holds for every pair(n; r) and

every normalized�.
A parabola has the nice property, that its derivative is a linear func-
tion of x, which simplifies the expression for the derivative of the
smoothed error rateE and finally allows for a closed form solution
for optimal weights�j .
OptimizingE(�), given the normalization constraint (17), by tak-
ing the derivatives of the Lagrangian:
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we arrive analogously to section 2.2 at the following matrix equa-
tion for �:

(�;�tr)tr = BQ0�1P 0, with (20)

Q0
0;0 = 0; Q0

0;j = 1; Q0
i;0 =

1

2
(A+B)2

Q0
i;j =

1

K �N

NX
n=1

KX
r=1

L(knr; kn0)

�
log

pi(kn0jxn)

pi(knrjxn)

��
log

pj(kn0jxn)

pj(knrjxn)

�
;

(i; j = 1; :::;M);

P 0
0 =

1

B

P 0
i =

1

K �N

NX
n=1

KX
r=1

�
log

pi(kn0jxn)

pi(knrjxn)

�
L(knr; kn0);

(i = 1; :::;M): (21)



3. EXPERIMENTS

Experiments were carried out on the male part of the Wallstreet
Journal development and evaluation test sets of 1992 (sidt 05,
si et 05) with a vocabulary of 5000 words.
Triphone models with Laplacian mixture densities and a grand
variance vector, as well as language models were trained on the
corresponding WSJ0 training data [8].
A set of hypotheses was created by decoding N-best lists on the
development and evaluation data.
Various language and acoustic models were combined into a de-
coder, using the discriminative model combination approach. The
computed combinations were compared with the optimal combina-
tions obtained by an “exhaustive” search. The model combination
was optimized on the development set (sidt 05) and tested on the
evaluation set (siet 05).
Results of experiments using equation (20) are summarized in Ta-
ble 1. In the first experiment discriminative model combination
was applied to compute the optimal language model factor (� in
(4)). The obtained factor was close to the known optimal factor
and gave no significant change in the recognition output (Table 1).
This validates the approach at least for the automatic computation
of an optimal language model factor.
In a second experiment the accuracy of the decoder could be im-
proved by a combination of a word internal triphone system, a
crossword triphone system, a bigram, a trigram and a fourgram
language model (see Table 1, ww+xw+bg+tg+fg). The improve-
ment was obtained by optimally integrating all 5 models into one
decoder, instead of searching for the ’best’ of the language models
and the ’best’ of the acoustic models (see Table 1).

Table 1: Word error rates (in %) using various N-gram language
models (bg-bigram, tg-trigram, fg-fourgram), decision tree clus-
tering (ww - word internal triphones, xw - crossword triphones),
exh. search - exhaustive optimization of model combination, DMC
- automatic optimization by “Discriminative Model Combination”

male si dt 05’92 si et 05’92

ww+bg (exh. search) 9.4 5.4
ww+bg (DMC) 9.5 5.5

xw+bg (exh. search) 8.2 5.2
xw+bg (DMC) 8.1 5.1

xw+tg (exh. search) 7.0 4.0
xw+tg (DMC) 7.0 4.0

xw+fg (exh. search) 6.6 3.5
xw+fg (DMC) 6.6 3.5

ww+xw
+bg+tg+fg (DMC) 6.3 3.2

4. CONCLUSION

The proposed discriminative model combination approach aims at
an optimal combination of modelspj(wjx) into a distribution of
log-linear form.

For the optimization of the model combination a GPD based iter-
ative formulation was derived. In addition a reasonable optimiza-
tion criterion was found, which leads to a closed-form solution.
Some examples for the application of discriminative model combi-
nation were discussed. Integrating one acoustic and one language
model (language model factor), several experiments have validated
the optimality of the computed coefficients.
Combining 5 acoustic and language models into one decoder leads
to an increased accuracy of the decoder, compared to the best pair-
wise combination of the 5 models. In this case an exhaustive
search for the optimal model combination would be prohibitive.
Using a discriminative model combination we are now able to in-
tegrate any model into a decoder, since the weight�j of the model
pj within the combination depends on its ability to provide infor-
mation for correct classification.
Finally, the discriminative model combination allows for the search
for more complex and more accurate combinations of models of
the speech communication process, which will be the subject of
further work.
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