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ABSTRACT In the frequency domain, the convolutive mixture becomes

In this paper we address the issue of Orthogonal Techniqueéan instantaneous mixture at each frequency bin:

for Blind Source Separation of periodic signals when the
mixtures are corrupted with spatially correlated noises. The
noise covariance matrix is assumed to be unknown. This

problem is of major interest with experimental signals. We X() = 4)-5() +B(f) (2)
first remind that the Principal Components Analysis (PCA), Y5

cannot provide a correct estimate of the signal subspace
when the noises are spatially correlated or when their power
spectral densities are different. We then introduce a new es- o
timator of the unnoisy spectral matrix using delayed blocks.
The only assumption is that the noise correlation and cross-
correlation lengths must be shorter than the source correla-
tion lengths. Simulation results show the efficiency of the
new method.

H(f) is then x p matrix whose columns are the Fourier
Transforms of vectorg, (¢). In order to simplify the nota-
tion, (f) will be omitted.
The orthogonal techniques use the PCA as a first step, to
whiten the observations. This relies on projecting the ob-
servations on an orthonormal base of the signal subspace
Fs. Further separation is achieved with the use-of or-
der information [1] or joint diagonalisation [3] to find the

1. INTRODUCTION exact base of the sources thanks to Givens' rotation matri-

ces. Obviously, the efficiency of the whole process depends

Blind Source Separation consists in recovering the signalsgp the accuracy of the first step, since it provides an esti-
emitted byp sources from (n > p) linear and station-  mation of the number of sources (using MDL, AIC or other
ary mixtures of these signals. Thesensors are receiving criteria) and a base of the signal subspace. In this paper
convolutive mixtures corrupted with additive noises. The e just address the signal subspace estimation issue. The

observation vector () is modelled as: whitening matrix is built with the eigenvalues and eigen-
vectors 0f~y = F{Y .Y} which is the spectral matrix of
P n the unn0|sy mixtures. Unfortunateby is estimated from
z(t) = Zﬁi(t) *5i(1) + Zﬂj(t) *n;(t) (1) v (y. =~ _ 4+~ )wherey is unknown When the
=t = ﬁ())(lse:gpectr_ail/ mat_r?x is not pr(J)BportlonaI to the identity ma-
b trix (i.e. when the noises are not spatially wh@zj is ill

estimated. Consequently the source number and the signal
subspace are not correctly estimated. The PCA looses effi-
ciency. This problem is reminded in the second part of this
paper. In the third part we introduce a new estimatoy QI

using delays to eliminate the noise influence. In the fourth
part we choose a criterion of distance to the signal subspace
and the performance of the proposed method is compared
yvith the PCA.

o thes; (t) are periodic sources of different fundamental fre-
guencies,

o the k-th component of,; (¢) is the impulse response char-
acterizing the propagation from thieh source to thé-th
sensor,

o the elements df(¢) result from the filtering of: spectrally
white gaussian noises; (¢).

¢ the sources are mutually independent and independen
from the noises.



2. MISMATCHING OF THE USUAL PCA IN
SEVERE NOISE CONDITIONS

In these conditions;? can be estimated from the— p last

eigenvalues of2 and substracted to thefirst eigenvalues

to get an estimate db,.

The vector of unnoisy mixtures can be written as:

Y = H'.S with E{'ST}=1

3)

+ stands for the transconjugate a:lf})cfor the identity matrix
of rankp. The Singular Value Decomposition &f' is:

H' v.DY? 1

(4)

e V andll are two unitarian matrices respectivelyx n
anﬁp X p,_

e D'/?isan x pdiagonal matrix with elementg;, i=
1...p. When the first mixing matrix{ is unitarian, the

)\; are exactly the Power Spectral Densities (PSD) of the
sources at the frequengy

The Eigenvalue Decomposition 9; can be written, using

the singular elements df":

= Tyt=v.Dvt (5

V.DY? 11

(6)

The eigenvalueg; are assumed to be ranged in decreasing
order. The firsp eigenvalues and their corresponding eigen-
vectors are representativelos.

The PCA consists in projecting on an orthonormal base
of the signal subspace with a matiiX verifying
I

=r

&'ly .&‘I' = (7)

Let us denoteD, the square sub-matrix containing the first
p diagonal elements @ andV the rectangular submatrix
containing the firsp columns ofV. The whitening matrix
is equal to -

-1/

o

(8)

=

2.&4-

Unfortunately, in a noisy context, one can only access to
Ty When the noises are spatially white, the noise spectral
matrix is on the form (9) and the Eigenvalue Decomposition
of Ty provides the same eigenvectors asjgr(lO).

_ 2
I, = % L 9)
vy = V.(D+opL)V* (10)
=X — — —
Q

With experimental si_gna|§B is hardly ever on the form of

(9) and the factorization (10) is not possible anymore. Con-

sequently, in the Eigenvalue Decomposition_y())(f (11), the

first p column vectors ot/ don't span only the signal sub-
space but @ dimensional subspace in the+ p dimen-
sional space spanned by the signal and the noise. Moreover
the eigenvalues are ill estimated too and algorithms (such as
AIC, MDL,...) for estimating the source number fail. Con-
sequently the whitening matri¥’ is ill estimated.

+

=U.AUT with
Py i —— #

=X (11)

{

The conclusion is that the method used for estimaﬂgg

is not appropriate in severe noise conditions. In the case
of periodic sources, we propose in the next section, a new
estimator ofly, more robust to spatially correlated noise.

> =
I2|=<

3. ADIRECT ESTIMATOR OF THE UNNOISY
SPECTRAL MATRIX

The spectral matrin is estimated from the N-point Dis-
crete Fourier Transform of on M sliding blocks. In the
case of periodic signals it seems interesting to exploit the
fact that the autocorrelation lengths of the sources are larger
than the correlation lengths of all the noises. kgtbe
the greater correlation or cross-correlation length ofithe
noises. LetX be the DFT ofx on a temporal block and
X7 the DFT on a block delayed of samples. Ifr > 7,
at each frequency bin, the covariance matrix (12) contains
only information about the sources.
7, = B{X.X""} (12)
Suppose that theth source has an harmonic frequengy
close to the analysis frequency. After the source normaliza-
tion introduced in the previous sectio/_r} can be written
as:

1= H.B{8.ST T (13)
= \ ,
g
e—jZﬂ'flr 0
0 = (14)
0 e—j27Tpr



From (4) and (13) we get: We show simulation results on figure 1, 2 and 3. Two sources
are mixed and observed on 6 sensors. Each source is com-

.Q.E+.D1/2+.Z+ (15) posed of 2 pure frequencies (0.14,0.36 and 0.15,0.37). The

T _ mixture is obtained from AR1 filters with coefficients in the
rangel0, 1] so that some filters are low-pass and others are

It is then theoretically possible to find back the Eigenvalue high-pass. The spatially correlated and spectrally colorated

Decomposition o (5) with the use of a second spectral noises result from the filtering of white noises with AR1
. . =Y i S filters too. As shown on the table below the noise power
matrix obtained with delay-2+. The final relation is:

spectral densities on the frequency bin 0.15 are different on

r o 1/2
1, =X

1=

N R T g 2 every sensor and the corresponding Signal to Noise Ratios
%, = 40T (18)  re about-5 dB.
We must pay attention to the fact that this expression in- sensors| Noise PSD| SNRin dB
volves the inverse of a matrix of sizebut rankp. In a prac- 1 0.17 -5.01
tical consideration, stability is improved using the pseudo- 2 0.32 -5.03
inverse algorithm, so that only the non trivial eigenvalues of 3 0.14 -5.01
Z;J’ are inversed. 4 0.21 -5.02
- 5 0.43 -5.00
6 0.09 -5.00

4. DISTANCE TO THE SIGNAL SUBSPACE -
SIMULATIONS RESULTS Computations are processed on 612 sliding blocks of 64
samples withr = 70 samples. The sliding step is 16 sam-

As we said in section 2, the efficiency of PCA relies on the ples. Denotey; and~-, the estimation ofy  respectively
estimation of the source number and the estimation of an or-yjith the usual PCA method, and the new method involving
thonormal base afs. We now need a criterion to measure  the delayr. d1 andd2 are the corresponding distances to the
jointly the accuracy of the estimated eigenvalues and thesjgnal subspace. In this simulation we assume that the num-
closeness to the signal subspace. Defjdfehe matrix 2 per of sources is known, because we just study the signal
norm, andy the estimate of . Thedistancdy —7 [|  subspace estimation. In figure 1 one can see that the eigen-
is not appropriate sincfy can be close tg_ without the values ofy; in dotted line are very far from the eigenvalues

= =Y L= L .
good eigenvalues and eigenvectors. Consequently the criof 7, in solid line whereas in figure 2, the eigenvalues of
terion must rely on the whitening matri¥’. The usual re-  +, are very close to the eigenvalues)of. The distance/2

jection rates referred in [2] cannot be used here since theig the signal subspace is much lower than the distdhees
rotation matrixII is undetermined after the PCA. We must shown in figure 3.

pay attention to the fact that the estimated whitening matrix
W is not uniquely determined: it can be left multiplied by

a unitarian matrix [4]. Denot@/ = b, PV ifthe 2

column vectors irV; form an orthonormal base @k then o zv
~ — ’ 1
&Jr .V, is close to a unitarian matrif. When the mix- 15¢

ing matrix H is unitarian,P is diagonal. In this situation,
when the estimated eigenvalues are close to the real ones
the norm of (17) is close to 1 (norm &f).

-1/

=)
=

S R

<

LD, ? (17)

0.3 0.4 0.5
# denotes the pseudo-inverse. This considerations leads to
the following distance criterion: Figure 1: eigen values o_/fY andy,

AW, W) =| |WWw#|-1 | (18)
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Figure 3: distance tos estimated fromy; andy,

5. CONCLUSIONS

In this paper we study the Principal Component Analysis
issue in the context of spatially correlated noises when the
covariance matrix is unknown. This approach is of major
interest in Blind Source Separation of experimental signals.
In this context the PCA fails because the spectral matrix of
unnoisy mixtures is ill-estimated. We propose, in the case
of periodic sources, a new estimator of this matrix com-
puted from two interspectral matrices using two different
delays. We choose a distance criteria to the signal subspace
and show the efficiency of the method with a simulation in
severe conditions (Signal to Noise Ratio around -5dB, spa-
tially correlated and spectrally colorated noises). The re-
sults are encouraging but some further work has to be done
to avoid the choice of a threshold (for the pseudo-inverse)
and to apply the method to experimental signals.



