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ABSTRACT

In this paper we address the issue of Orthogonal Techniques
for Blind Source Separation of periodic signals when the
mixtures are corrupted with spatially correlated noises. The
noise covariance matrix is assumed to be unknown. This
problem is of major interest with experimental signals. We
first remind that the Principal Components Analysis (PCA),
cannot provide a correct estimate of the signal subspace
when the noises are spatially correlated or when their power
spectral densities are different. We then introduce a new es-
timator of the unnoisy spectral matrix using delayed blocks.
The only assumption is that the noise correlation and cross-
correlation lengths must be shorter than the source correla-
tion lengths. Simulation results show the efficiency of the
new method.

1. INTRODUCTION

Blind Source Separation consists in recovering the signals
emitted byp sources fromn (n � p) linear and station-
ary mixtures of these signals. Then sensors are receiving
convolutive mixtures corrupted with additive noises. The
observation vectorx(t) is modelled as:

x(t) =

pX
i=1

hi(t) � si(t) +
nX

j=1

g
j
(t) � nj(t)

| {z }
b(t)

(1)

� thesi(t) are periodic sources of different fundamental fre-
quencies,
� thek-th component ofhi(t) is the impulse response char-
acterizing the propagation from thei-th source to thek-th
sensor,
� the elements ofb(t) result from the filtering ofn spectrally
white gaussian noisesnj(t).
� the sources are mutually independent and independent
from the noises.

In the frequency domain, the convolutive mixture becomes
an instantaneous mixture at each frequency bin:

X(f) = H(f):S(f)| {z }
Y (f)

+B(f) (2)

H(f) is then� p matrix whose columns are the Fourier
Transforms of vectorshi(t). In order to simplify the nota-
tion, (f) will be omitted.
The orthogonal techniques use the PCA as a first step, to
whiten the observations. This relies on projecting the ob-
servations on an orthonormal base of the signal subspace
Es. Further separation is achieved with the use of4-th or-
der information [1] or joint diagonalisation [3] to find the
exact base of the sources thanks to Givens’ rotation matri-
ces. Obviously, the efficiency of the whole process depends
on the accuracy of the first step, since it provides an esti-
mation of the number of sources (using MDL, AIC or other
criteria) and a base of the signal subspace. In this paper
we just address the signal subspace estimation issue. The
whitening matrix is built with the eigenvalues and eigen-
vectors of


Y
= EfY :Y +g which is the spectral matrix of

the unnoisy mixtures. Unfortunately

Y

is estimated from



X
(


X
= 


Y
+ 


B
) where


B
is unknown. When the

noise spectral matrix is not proportional to the identity ma-
trix (i.e. when the noises are not spatially white),


Y
is ill

estimated. Consequently the source number and the signal
subspace are not correctly estimated. The PCA looses effi-
ciency. This problem is reminded in the second part of this
paper. In the third part we introduce a new estimator of


Y
,

using delays to eliminate the noise influence. In the fourth
part we choose a criterion of distance to the signal subspace
and the performance of the proposed method is compared
with the PCA.



2. MISMATCHING OF THE USUAL PCA IN
SEVERE NOISE CONDITIONS

The vector of unnoisy mixtures can be written as:

Y = H0:S0 with EfS0:S0+g = I
p

(3)

+ stands for the transconjugate andI
p

for the identity matrix

of rankp. The Singular Value Decomposition ofH 0 is:

H 0 = V :D1=2:� (4)

� V and� are two unitarian matrices respectivelyn� n

andp� p,
�D1=2 is an � p diagonal matrix with elements

p
�i; i =

1 : : : p. When the first mixing matrixH is unitarian, the
�i are exactly the Power Spectral Densities (PSD) of the
sources at the frequencyf .
The Eigenvalue Decomposition of


Y
can be written, using

the singular elements ofH 0:



Y

= V :D1=2:�:�+:D1=2+:V + = V :D:V + (5)

D = diag(�1; : : : ; �p; 0; : : : ; 0) (6)

The eigenvalues�i are assumed to be ranged in decreasing
order. The firstp eigenvalues and their corresponding eigen-
vectors are representative ofEs.
The PCA consists in projectingX on an orthonormal base
of the signal subspace with a matrixW verifying

W:

Y
:W+ = I

p
(7)

Let us denoteDs the square sub-matrix containing the first
p diagonal elements ofD andVs the rectangular submatrix
containing the firstp columns ofV . The whitening matrix
is equal to

W = Ds
�1=2:Vs

+ (8)

Unfortunately, in a noisy context, one can only access to


X

. When the noises are spatially white, the noise spectral

matrix is on the form (9) and the Eigenvalue Decomposition
of 


X
provides the same eigenvectors as for


Y
(10).



B

= �2b :In (9)



X

= V :(D + �2b :In| {z }



):V + (10)

In these conditions,�2b can be estimated from then� p last
eigenvalues of
 and substracted to thep first eigenvalues
to get an estimate ofDs.
With experimental signals


B
is hardly ever on the form of

(9) and the factorization (10) is not possible anymore. Con-
sequently, in the Eigenvalue Decomposition of


X
(11), the

first p column vectors ofU don’t span only the signal sub-
space but ap dimensional subspace in then + p dimen-
sional space spanned by the signal and the noise. Moreover
the eigenvalues are ill estimated too and algorithms (such as
AIC, MDL,...) for estimating the source number fail. Con-
sequently the whitening matrixW is ill estimated.



X
= U:�:U+ with

�
U 6= V

� 6= 

(11)

The conclusion is that the method used for estimating

Y

is not appropriate in severe noise conditions. In the case
of periodic sources, we propose in the next section, a new
estimator of


Y
, more robust to spatially correlated noise.

3. A DIRECT ESTIMATOR OF THE UNNOISY
SPECTRAL MATRIX

The spectral matrix

X

is estimated from the N-point Dis-

crete Fourier Transform ofx onM sliding blocks. In the
case of periodic signals it seems interesting to exploit the
fact that the autocorrelation lengths of the sources are larger
than the correlation lengths of all the noises. Let�b be
the greater correlation or cross-correlation length of then

noises. LetX be the DFT ofx on a temporal block and
X� the DFT on a block delayed of� samples. If� � �b,
at each frequency bin, the covariance matrix (12) contains
only information about the sources.


�
X
= EfX:X�+g (12)

Suppose that thei-th source has an harmonic frequencyfi
close to the analysis frequency. After the source normaliza-
tion introduced in the previous section
�

X
can be written

as:


�
X

= H0: EfS0:S0�+g| {z }
�

:H0+ (13)

� =

0
B@

e�j2�f1� 0
...

0 e�j2�fp�

1
CA (14)



From (4) and (13) we get:


�
X
= V :D1=2:�:�:�+:D1=2+:V + (15)

It is then theoretically possible to find back the Eigenvalue
Decomposition of


Y
(5) with the use of a second spectral

matrix obtained with delay�2� . The final relation is:



Y

= 
�
X
:(
�

X

+)�1:
�2�
X

(16)

We must pay attention to the fact that this expression in-
volves the inverse of a matrix of sizen but rankp. In a prac-
tical consideration, stability is improved using the pseudo-
inverse algorithm, so that only the non trivial eigenvalues of

�
X

+ are inversed.

4. DISTANCE TO THE SIGNAL SUBSPACE -
SIMULATIONS RESULTS

As we said in section 2, the efficiency of PCA relies on the
estimation of the source number and the estimation of an or-
thonormal base ofEs. We now need a criterion to measure
jointly the accuracy of the estimated eigenvalues and the
closeness to the signal subspace. Denotek:k the matrix 2-
norm, andc


Y
the estimate of


Y
. The distancek


Y
� c


Y
k

is not appropriate sincec

Y

can be close to

Y

without the

good eigenvalues and eigenvectors. Consequently the cri-
terion must rely on the whitening matrixW . The usual re-
jection rates referred in [2] cannot be used here since the
rotation matrix� is undetermined after the PCA. We must
pay attention to the fact that the estimated whitening matrixcW is not uniquely determined: it can be left multiplied by

a unitarian matrix [4]. DenotecW = ~Ds
�1=2

: ~Vs
+

. If the

column vectors in~Vs form an orthonormal base ofEs then

~Vs
+
:Vs is close to a unitarian matrixP . When the mix-

ing matrixH is unitarian,P is diagonal. In this situation,
when the estimated eigenvalues are close to the real ones,
the norm of (17) is close to 1 (norm ofP ).

cW:W
# = ~Ds

�1=2
: ~Vs

+
:Vs:Ds

1=2 (17)

# denotes the pseudo-inverse. This considerations leads to
the following distance criterion:

d(cW;W ) = j kcW:W#k � 1 j (18)

We show simulation results on figure 1, 2 and 3. Two sources
are mixed and observed on 6 sensors. Each source is com-
posed of 2 pure frequencies (0.14,0.36 and 0.15,0.37). The
mixture is obtained from AR1 filters with coefficients in the
range[0; 1] so that some filters are low-pass and others are
high-pass. The spatially correlated and spectrally colorated
noises result from the filtering of white noises with AR1
filters too. As shown on the table below the noise power
spectral densities on the frequency bin 0.15 are different on
every sensor and the corresponding Signal to Noise Ratios
are about�5 dB.

sensors Noise PSD SNR in dB
1 0.17 -5.01
2 0.32 -5.03
3 0.14 -5.01
4 0.21 -5.02
5 0.43 -5.00
6 0.09 -5.00

Computations are processed on 612 sliding blocks of 64
samples with� = 70 samples. The sliding step is 16 sam-
ples. Denote
1 and
2, the estimation of


Y
respectively

with the usual PCA method, and the new method involving
the delay� . d1 andd2 are the corresponding distances to the
signal subspace. In this simulation we assume that the num-
ber of sources is known, because we just study the signal
subspace estimation. In figure 1 one can see that the eigen-
values of
1 in dotted line are very far from the eigenvalues
of 


Y
in solid line whereas in figure 2, the eigenvalues of


2 are very close to the eigenvalues of

Y

. The distanced2

to the signal subspace is much lower than the distanced1 as
shown in figure 3.
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Figure 1: eigen values of

Y

and
1
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Figure 2: eigen values of

Y

and
2
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Figure 3: distance toEs estimated from
1 and
2

5. CONCLUSIONS

In this paper we study the Principal Component Analysis
issue in the context of spatially correlated noises when the
covariance matrix is unknown. This approach is of major
interest in Blind Source Separation of experimental signals.
In this context the PCA fails because the spectral matrix of
unnoisy mixtures is ill-estimated. We propose, in the case
of periodic sources, a new estimator of this matrix com-
puted from two interspectral matrices using two different
delays. We choose a distance criteria to the signal subspace
and show the efficiency of the method with a simulation in
severe conditions (Signal to Noise Ratio around -5dB, spa-
tially correlated and spectrally colorated noises). The re-
sults are encouraging but some further work has to be done
to avoid the choice of a threshold (for the pseudo-inverse)
and to apply the method to experimental signals.
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