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ABSTRACT

We describe a new approach to local nonlinear image restoration,
based on approximating functions using a regular grid of points
in a many-dimensional space. Symmetry reductions and com-
pression of the sparse grid make it feasible to work with eight-
dimensional grids as large as148. Unlike polynomials and neu-
ral networks whose filtering complexity per pixel is linear in the
number of filter coefficients, grid filters haveO(1) complexity per
pixel. Grid filters require only a single presentation of the train-
ing samples, are numerically stable, leave unusual image features
unchanged, and are a superset of order statistic filters. Results are
presented for blurring and additive noise.

1. INTRODUCTION

Global iterative filters for image restoration can produce excel-
lent results, but tend to be computationally expensive. If speed
is a concern, local nonlinear filters may provide a faster alterna-
tive. Local nonlinear filters restore an image one pixel at a time,
estimating the original pixel values0 using a nonlinear function
F (x0; : : : ; xn�1) of pixels from the degraded image. For exam-
ple, a 3x3 filter would have as inputs the pixel to be restored (x0)
and its eight neighbours:

x8 x4 x5
x3 x0 x1
x7 x2 x6

Median filters, order statistic filters [2], and Lee’s local statistics
filter [5] are well-known examples of such filters. For a signal and
degradation process satisfying certain weak conditions, a function
F which is optimal in the minimum mean-squared error (MMSE)
sense exists. This MMSE-optimal filter tends to have no computa-
tionally reasonable form, so it must be approximated, for example
with feedforward neural networks or Volterra series (polynomi-
als). These approaches suffer from a serious drawback: training
and filtering time per pixel is linear in the number of filter coef-
ficients (network weights or Volterra coefficients), with the result
that good nonlinear restoration filters tend to be slow. Polynomial
filters are prone to additional problems with numerical stability.

In this paper we explore a new approach which combines a
point estimator for flat regions with a nonlinear detail filter. The
nonlinear detail filter approximates the MMSE-optimalF using a
regular grid of points. For example, for a 3x3 filter the function
F can be approximated by a 9-dimensional grid of points. Each
grid point has an associated coefficient which gives the value of
F at that point. Interpolation is used to handle inputs which don’t
coincide with a grid point.
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Figure 1: Eight orientations of a 3x3 window which should be
treated the same by a filter with orientation-invariance.

2. THEORY AND IMPLEMENTATION

The filter has this basic structure:

ŝ0 = F (x) = �(x)F1(x) + (1� �(x))F2(x) (1)

whereŝ0 is the estimate of the original pixel value,F1 is a grid
filter to handle detail regions, andF2 is a point estimator used to
restore flat regions. The vectorx contains pixel values from the
local neighbourhood. For additive white Gaussian noise,F2 is a
local average; for other noise distributions, order statistic filters
provide better noise reduction [2].

The function�(x) ranges between0 for flat regions and1 for
highly detailed regions. The equation for� is borrowed from the
Lee filter structure [5]. Given a variance estimate�2x for a local
window,� is given by:

� = max

�
�2x � �2n

�2x
; 0

�
(2)

where�2n is an estimate of the noise variance.

2.1. Reducing the number of grid points

A grid filter with inputs from a 3x3 window requires a 9-dimensional
grid. As the grid resolution is increased, the number of grid points
gets large very quickly. Symmetry assumptions and a sparse rep-
resentation are used to keep the number of grid points reasonable.

2.1.1. Orientation invariance

In many applications, the behaviour of the filter should be the same
for different orientations of the same 3x3 window. Figure 1 illus-
trates 8 orientations of a 3x3 window which should be treated as
equivalent for the purpose of restoring the central pixel. These 8
orientations define a permutation group on the grid coordinates;



assuming the function values to be invariant under this permuta-
tion group reduces the number of grid coefficients by a factor of
(approximately) eight.

2.1.2. Signal mean invariance

In certain scenarios, the filter behaviour can be assumed indepen-
dent of the local signal mean. If an amount� is added to the input
pixels, then the output should also shift by�:

F1(x0 + �; : : : ; xn�1 + �) = F1(x0; : : : ; xn�1) + � (3)

To exploit this property, set� = �x0. Then, by (3),

F1(x0; : : : ; xn�1) = x0 + F1(0; x1 � x0; : : : ; xn�1 � x0) (4)

This property eliminates one of the arguments ofF1, reducing the
dimensionality of the grid by one. Signal mean invariance also
turns the functionF1 into anadjustmentapplied to the degraded
pixel valuex0 (4). This is crucial for numerical stability consider-
ations, described later.

2.1.3. Reverse video invariance

Another symmetry isreverse-video invariance. SupposeI is an
image, and denote byI the reverse video image. A filterF with
reverse-video invariance satisfiesFI = FI: filtering the reversed
image gives the same result as reversing the filtered image. Let
the maximum pixel intensity value beM . Then the reverse-video
input pixels areM�x0,M�x1, : : :,M�xn�1. To have reverse-
video invariance,F1 must satisfy:

F1(x0; : : : ; xn�1) = M � F1(M � x0; : : : ;M � xn�1) (5)

Applying the mean-invariance property (4) eliminatesM from the
equation:

F1(x0; : : : ; xn�1) = x0 � F1(0; x0 � x1; : : : ; x0 � xn�1)

= x0 + F1(0; x1 � x0; : : : ; xn�1 � x0)

To exploit this invariance, the grid must be centered about (0,0,: : :,0).
Then the grid possessesan anti-symmetry: for each grid point with
valuefi, there is an antisymmetric grid point with value�fi. This
reduces the number of grid coefficients by a factor of two.

2.1.4. Sparse representation of the grid

The filter inputs(x0; : : : ; xn�1) form clusters corresponding to
edges, flat regions, lines and ramps. Between these clusters are
large volumes of empty space containing unused grid points. The
number of grid coefficients can be drastically reduced by using a
sparse representation which compressesthese empty regions. Each
grid point is stored in a hash table, keyed by integer grid coordi-
nates. During training, grid points are added as required.

Figure 2 shows the number of grid points required for a certain
3x3 filter using various grid sizes. Without any reductions in grid
size, an 8x8x: : :x8 grid would require89 coefficients (about 130
million). Training such a filter would tax the abilities of a super-
computer with 32 Gb of memory. After applying symmetry reduc-
tions, the number of coefficients drops to roughly 1 million, which
would require a high-end computer with about 1 Gb of memory to
train. Using a sparse representation for the grid reduces the num-
ber of coefficients to a mere 23000. Such a filter can be trained in
ten minutes on a typical workstation with 64 Mb of memory.

Raw grid size                         
After symmetry reductions             
After symmetry + sparse representation
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Figure 2: Number of grid points for a 3x3 filter

2.2. Interpolation method

Evaluating the grid filterF1(x) whenx does not coincide with a
grid point requires interpolation. For speed, this interpolation must
involve as few grid points as possible. Piecewise linear interpola-
tion achieves this: interpolating on aN -dimensional grid involves
onlyN + 1 grid points. For any pointx, one can find a bounding
hypercube whose corners coincide with grid points. Letx

0 be the
point after scaling into the unit hypercube[0; 1]N . The hypercube
is sliced intoN ! simplexes of the form

x
0

i1
� x

0

i2
� : : : � x

0

iN
(6)

where(i1; i2; : : : ; iN ) is a permutation of(1; : : : ;N). Over each
simplex, the interpolation is linear and recovers the values of the
grid points at the corners. The interpolation procedure produces
a sparse vectorw(x) of interpolation coefficients, one for every
point in the grid. Only those coefficients corresponding to the N+1
contributing grid points are nonzero.

This scheme has an interesting relationship to order statistic
filters [2]. Order statistic filters are also piecewise linear over re-
gions of the form (6). If the grid is appropriately scaled and cen-
tered about the origin, it becomes a superset of order statistic fil-
ters. Performance is then guaranteed to be equivalent to, or better
than, the optimal order statistic filter for the problem.

2.3. Training

Filter coefficients are chosen to minimize the expected mean--
squared error. Let the vector of grid coefficients bef , andw(x)
the interpolation vector. The filter has the form:

F (x) = �(x0 + f
T
w) + (1 � �)F2(x) (7)

The MMSE criterion function is:

J(f) = E
�
(s0 � F (x))2

�
(8)

The expectation operator is approximated by summing overN

training samplesfsj
0
;xjg drawn from pairs of pristine and de-

graded images. MinimizingJ results in a linear system of equa-
tionsAf = b, with:

A =

NX
j=1

�
2

jwjw
T
j (9)
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Figure 3: Training and filtering rates as a function of filter size

b =

NX
j=1

�jwj

�
s
j
0
� �jx

j
0
� (1� �j)F2(x

j)
�

where�j = �(xj) andwj = w(xj). The�2 term inA and the
� term inb weight the least-squares solution toward performance
in detail regions. Since flat regions are handled byF2, the grid
filter can “concentrate its attention” on performing well in detail
regions. The presence of the(1� �)F2 term inb allows the grid
filter to correct errors made by the local average estimate. The
matrix A is sparse and symmetric, with roughly 20-30 nonzero
elements per row. To avoid numerical instability arising from the
approximation of the expectation operator, zero-order regulariza-
tion [3] is used:

(A+ �I)f = b (10)

with � chosen just large enough to ensure stability. When many
choices of coefficients satisfy the optimality condition, the reg-
ularization selects the vectorf with least norm. Since the signal-
mean invariance assumption turnsF1 into anadjustmentapplied to
the degraded pixel value, the regularization picks the filter which
causes the least change in the degraded image. This ensures that
unusual image features are passed unchanged by the filter. The
regularization also drives the value of unused grid coefficients to
zero, permitting use of the sparse representation. The sparse sys-
tem of equations is solved using the Conjugate Gradient iterative
method [1]. Note that unlike neural networks, grid filters require
only a single presentation of the training samples.

3. RESULTS

3.1. Text images with additive noise

A filter using a 3x3 grid filter forF1 and a 5x5 averager forF2
was trained on images of three fonts (Helvetica, Times-Roman,
and Courier) at 18 pt and 36 pt resolution, with intensity scaled to
[0; 255]. The degradation process was Additive White Gaussian
Noise (AWGN) with�2 = 400. Various grid sizes were used,
from 28 up to88. Figure 3 shows how training and filtering rates
varied as the grid size increased (rates are for a 100 MHz RS/6000
workstation). In theory, these rates are asymptotically constant;
the gradual decrease is due to cache effects. This is in sharp con-
trast to the filtering rates of feedforward neural networks and poly-
nomials, which are inversely proportional to the number of filter
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Figure 4: Filter performance as a function of filter size
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Figure 5: Signal to noise ratio

coefficients. Figure 4 shows filter performance on a sample of 24
pt Palatino text (not in the training set). All grids larger than38

outperformed the global Wiener filter and Lee’s local statistics fil-
ter. Figure 6 shows a small portion of the restoration produced by
the88 grid filter. Figure 5 shows the average signal-to-noise ratio
as a function of normalized spatial frequency (��1) for the88 grid
filter result. In medium frequency bands (��1 � 0:1), the 5x5
averaging filterF2 is able to boost the SNR by 5-10 dB. In high
frequency bands (��1 � 0:5), the nonlinear grid filter is able to
exploit its prior knowledge of what text should look like to boost
the SNR by up to 25 dB.

3.2. Faces with additive noise

A filter using an118 grid filter forF1 and a 5x5 average forF2 was
trained on images of faces degraded by AWGN with�2 = 200.
None of the faces in the training set were wearing glasses. The fil-
ter was tested on an image of a person wearing glasses (Figure 7).
This image was 212x228 and required 10 seconds to filter. The
strong, dark rim of the glasses was unlike anything present in the
training sets, but was passed unchanged. This behaviour is un-



Noisy Filtered
MSE=400, PSNR=22.2 MSE=27.5, PSNR=33.8

Figure 6: Restoration of 24-pt Palatino text using an88 grid filter

Noisy Filtered
MSE=200 PSNR=25.2 dB MSE=46.8 PSNR=31.4 dB

Figure 7: Restoration of a face image using an118 grid filter

like polynomial or feedforward network filters, which tend to have
unpredictable behaviour for unexpected inputs.

3.2.1. Text with blurring and noise

A filter using a148 grid filter forF1 and a 5x5 averager forF2 was
trained on images of text (Helvetica, Times-Roman, and Courier
at 18 pt and 36 pt) degraded by blurring (a 3x3 mask) and AWGN
with �2 = 100. Figure 8 shows an excerpt from a restoration of
24 pt Palatino text (not in the training set) using this filter. The
image was 101x526 and required 9 seconds to filter. The grid filter
is able to exploit the tightly-constrained nature of text images to
simultaneously suppress noise and deblur the text.

4. LIMITATIONS

Grid filters are limited to a small number of inputs (roughly 13 if a
typical workstation is used for training). We have had success with
footprints as large as 15x15, with feature selection used to reduce
the number of inputs.

Training grid filters requires pairs of pristine and degraded im-
ages. These training pairs can be acquired experimentally (for ex-
ample, pairing low-quality images with those acquired by a high-
fidelity imaging system). If the degradation process is wellunder-
stood, degraded images can be simulated using appropriate syn-
thetic images. Grid filters are not suitable for blind deconvolution.

Grid filters are good at removing local degradations, for ex-
ample small amounts of blurring and white noise. They are not
suitable for removing large-scale blurring or low-frequency noise,

Blurred and noisy Filtered
MSE=1869 PSNR=15.4 dB MSE=665 PSNR=19.9 dB

Figure 8: Restoration of blurred and noisy text using a148 filter

although they might prove useful for cleaning up after a global
inverse filter.

They perform best when the image class and degradation is
tightly constrained. For example, a filter trained on document im-
ages with a specific amount of noise will perform much better than
a filter trained to handle a wide variety of image types and degra-
dations.

5. CONCLUDING REMARKS

We have described a new approach to local nonlinear image restora-
tion based on the idea of approximating a nonlinear restoration
functionF on a grid of points in a many-dimensional space. Grid
filters haveO(1) training and filtering complexity per pixel, inde-
pendent of the number of filter coefficients. They are fast to train,
numerically stable, leave unusual image features unchanged, and
are a superset of order statistic filters.

Grid filters are best at undoing local degradations, for exam-
ple small amounts of blurring and white noise. The more tightly
the image class and degradation can be constrained, the better the
resulting restoration.
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