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ABSTRACT

This paper proposes the optimization of a non standard ob-
jective function in the framework of Maximum Mutual In-
formation Estimation (MMIE).
In contrast with the classical MMIE estimation, where only
misrecognized training utterances contribute to the optimiza-
tion process, the contributions of near-miss classifications
are naturally embedded in the maximization of the proposed
function because it takes into account a non linear combina-
tion of the probabilities of the competing models that can be
tuned by means of a single parameter.
This corrective training procedure has been applied to an
Isolated Word Recognition task leading to significant per-
formance improvements with respect to Maximum Likeli-
hood Estimation and MMIE.

1. INTRODUCTION

Maximum Mutual Information Estimation is a popular dis-
criminative training technique for HMM parameter estima-
tion [1] that has shown to be a very good complement to
the conventional Maximum Likelihood Estimation for re-
ducing the error rate both in small and in large vocabulary
domains [5, 6].
The practical application of MMIE is Corrective MMIE [5].
It uses as its reestimation set only the misrecognized utter-
ances because, as will be detailed in Section 2, the contribu-
tion to the adjustment of the HMM parameters given by the
correct utterances is negligible. Since the bootstrap models
for MMI estimation are accurate, MLE trained models, the
recognition errors on the training utterances are very few.
Thus a small amount of the available training data remains
at disposal as a reestimation set. Moreover, the size of this
set decreases at every iteration of the algorithm. This is a
major drawback for this technique that is partially faced by

smoothing the new models with those from the previous it-
eration [5].
Corrective training [2], despite its name, is an alternative
to Corrective MMIE, whose goal is the minimization of
the error rate on the training set. This technique, as well
as other recently introduced Minimum Classification Error
training methods (MCE), based on Generalized Probabilis-
tic Descent (GPD) [4], is able to adjust the model parame-
ters in order to reduce not only the number of errors, but also
near-misses in classifying the training utterances. A train-
ing technique taking into account near-misses in addition to
misrecognized utterances is appealing because

� it makes better use of the training data since the rees-
timation set size increases,

� it reduces the risk of introducing new, undetected, er-
rors adjusting the model parameters,

� it tries to increase the separation between correct and
incorrect models increasing the robustness of the mod-
els.

In this paper we propose the optimization of a non stan-
dard objective function in the framework of Maximum Mu-
tual Information Estimation that allows not only to take into
account the contributions of near-miss classifications in the
maximization process, but also to weight the competing mod-
els by tuning a single parameter.
In the next Section the MMIE formulation is recalled to
point out its above mentioned drawbacks. In Section 3 our
rational objective function, referred to as the�-criterion is
proposed. It is similar to the classical MMIE formulation
but it has also a correlation with the MCE GPD formulation,
allowing all the competing models to be taken into consider-
ation. A frame-dependent adjustment of the models param-
eters is motivated and illustrated in Section 4. Finally, the
database and the results of this corrective training procedure



applied to an isolated word recognition task are reported in
Section 5.
In the following the discussed formulation and the reported
experimentation refer to the case of isolated word recogni-
tion only, but the presented techniques can be extended to
connected word or continuous speech recognition consider-
ing the competing candidates included in the N-best list of
sentence hypotheses.

2. MMIE TRAINING

The MMI objective function is defined by the sum over the
logarithms of the a posteriori probability of each training
utterance. When isolated word models are trained in a sys-
tem with a vocabulary ofV words having the same a priori
probability, the MMI criterion leads to the maximization of
the following objective function:

RMMI (�) =

VX
v=1

RvX
r=1

log
P (Ov

r j�v)
WP
w=1

P (Ov
r j�w)

(1)

whereRv is the number of training utterances of wordv,
and� is the set of the models.
According to [5] and using the notation introduced in [7],
the reestimation formula for the mean parameters of Gaus-
sian mixture componentk at statej of word model�v is
given by

e�vjk =
�vjk(x) +Djk � �jk

�vjk(1) +Djk
(2)

and the discriminative average�vjk(g(x)) for isolated word
models without tied states is defined by

�vjk(g(x)) =
VX
v�=1

RvX
r=1

TrX
t=1

(vr;t(j; k;Or) � �(v�; v) �

vr;t(j; k;Or) �
P (Or j�v)

WP
w=1

P (Orj�w)

) � g(x) (3)

wherevr;t(j; k;Or) is the probability of occupying them�
thmixture component of statej, and�(�; �) denotes the Kro-
necker delta.
Similar formulae can be derived for the reestimation of the
mixture weights and variance parameters [5].
It is worth noting that since the dynamic range of the a pos-
teriori probabilities is generally very large, for correctly rec-
ognized utterances the factor

ePMMIE = P (Orj�v)=

WX
w=1

P (Orj�w) (4)

will be very close to 1 for the correct model and to 0 for the
incorrect ones. As a consequence, correctly recognized ut-
terances will not contribute to the reestimation of the HMM
parameters because they produce similar positive and neg-
ative contributions to the discriminative average counts (3).
Thus, the reestimation set is limited only to the misrecog-
nized utterances, a small fraction of the available training
set.
As an example, the training set for the experiments reported
in Section 5 consists of 102983 utterances of a vocabulary
of 68 words. Only 649 of these utterances are misrecog-
nized by using models with a mixture of 4 Gaussians per
state, while there are 7990 near-misses according to a pre-
set threshold of the distance between the log probabilities of
the correct and of second best candidate models. Unfortu-
nately, the contribution of near-misses to the reestimation is
close to null becauseePMMIE is close to 1 for most of them.

3. THE �-CRITERION

To account for near-miss classifications in the adjustment of
the parameters, and to weight the contribution of competing
words, we propose to maximize the objective function de-
fined by the sum over a non standardclassification measure
of each training utterance:

R�(�) =

VX
v=1

RvX
r=1

log
P (Ov

r j�v)
�(r)

WP
w=1

P (Ov
r j�w)

�(r)

(5)

This classification measure is related to a smoothed count
of the recognition errors and of the near-miss classifications
due to the non linear combination of the probabilities of the
competing models.
The reestimation of the mean parameters of Gaussian mix-
ture componentk at statej is still obtained through equa-
tion (2), while it is easy to show, derivingR�(�) with re-
spect to the emission probabilitybvjk(t), that the new formu-
lation of the discriminative average�vjk(g(x)) becomes:

�vjk(g(x)) =

VX
v�=1

RvX
r=1

�(r)

TrX
t=1

�
vr;t(j; k;Or) � �(v�; v) �

vr;t(j; k;Or) �
P (Orj�v)

�(r)

WP
w=1

P (Orj�w)�(r)

�
� g(x) (6)

where the corrective factoreP�(r) is similar to ePMMIE but
with the probabilitiesP (Orj�v) raised to power�(r).
Rather than using a constant value for�, as often suggested
in the framework of MCE GPD training, we use instead a
value�(r) depending on the duration of the utterance. In
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Figure 1: Distribution of the values ofeP�(r)

particular, defining�(r) � 1=T (r), whereT (r) is the num-
ber of frames of utterancer, is equivalent to maximizing an
objective function similar to (1), where the log likelihood
log(P (Orj�v)) is replaced by the average log likelihood per
framelog(P (Orj�v))=T (r).
By varying a single parameter in the definition of�(r) it
is possible to take all the competing words into considera-
tion with greater or less extent as shown in Figure 1. The
figure shows the distribution of the values of the classifica-
tion measureeP�(r), obtained using the bootstrap models on
the same reestimation set of 7990 confusable training utter-
ances considered in the previous Section. These histograms
refer to�(r) � 1=T (r); 2=T (r); and4=T (r) respectively.
Notice that the distribution corresponding to� � 2=T (r) is
more uniform than the other ones, thus almost all the utter-
ances in the reestimation set will give a weighted contribu-
tion to the adjustment of the parameters. In all the experi-
ments presented in this paper�(r) � 2=T (r) has been used
because the histogram ofeP4=T (r), like ePMMIE , presents
a remarkable peak for values close to 1, and this effect is,
of course, more evident after a few retraining iterations. On
the other hand, the distribution ofeP1=T (r)) is unbalanced to-
ward the lower values of the classification measure, weight-
ing too much the competing words. It is possible to use an
adaptive�(r) after each retraining iteration, that counteracts
the natural progressive increase of the number of utterances
with confidence measure close to 1.

4. FRAME-DEPENDENT WEIGHTING

Looking at the discriminative average formula (6), it can
be noticed that the same corrective factoreP�(r) is used for
every frame of a given utterance. We argue, however, that
each frame adds a different contribution to the log prob-
ability log(P (Orj�v)), and as a consequence, to the final
correct/incorrect classification. We propose, therefore, to
weight differently the contribution of each frame to the dis-

crimination average, multiplyingeP�(r) by a frame-dependent
weight fdwt. To compute these frame-dependent correc-
tive factors, rather than relying on linguistic information
that are not readily available, we use the following strategy
based on acoustic information only. For the correct model
�v , we want to adjust its parameters giving more weight
to “bad” frames - those contributing less than the average
to log(P (Orj�v))-. On the other hand, we can limit the
amount of adjustment for frames that are already “good”,
i.e. that are well recognized by the current model. The
opposite is true for an incorrect model�w. A frame con-
tributing less than the average tolog(P (Orj�w)) can be
taken into account with a small weight because we agree
that it must not be well recognized by the current compet-
ing model.
It is particularly easy to obtain the contribution of frame
Ot;r to the log probabilitylog(P (Orj�v)) because it is ex-
actly the logarithm of the so calledscaling factorcomputed
during the forward trellis iterationsct =

P
s e�t(s), wheres

are the states of model�v ande�t(s) are the rescaled forward
probabilities.
Thus, the frame-dependent weights for the correct model is
computed using the sigmoid function

fdwt =
1

2
+

1

1 + e���(logct�log(P (Or)j�v)=T (r))
(7)

while the following (symmetric) sigmoid function is used
for the incorrect models

fdwt =
3

2
�

1

1 + e���(logct�log(P (Or)j�v)=T (r))
(8)

the sigmoid slope� can be tuned to select a suitable extent
for the corrective factors.

5. RESULTS

To test this approach we trained whole word HMMs for
an isolated word recognition task with a vocabulary of 68
words consisting of digits, credit-card names, commands,
positive and negative answers, and 26 Italian spelling names.
The training set includes 102983 telephone line utterances
of 1488 speakers, while testing is performed on a separate
set of 38196 utterances of 512 different speakers.
The results of the experiments are summarized in Table 1.
The first row reports the baseline results using a set of mod-
els obtained after 5 segmental k-means and 3 MLE itera-
tions, respectively. These models have been used as a boot-
strap for the discriminative training iterations.
The value of the iteration constantDv

jk in the reestimation
formula (2) has been set according to

Dv
jk =

RvX
r=1

�(r)

TrX
t=1

vr;t(j; k;Or) (9)



Table 1: Results comparing the baseline system and different reestimation approaches

Num. of Gaussians 1 2 4 16

MLE 973 (97.4%) 757 (98%) 649 (98.3%) 581 (98.5%)
MMIE 666 (98.2%) 637 (98.3%) n.a n.a

�-Criterion 556 (98.5%) 535 (98.6%) 479 (98.7%) 472 (98.8%)
Frame-dependent 539 (98.6%) 520 (98.6%) 467 (98.8%) 463 (98.8%)

Reestimation set size 14242 10038 7990 8042

here
TrP
t=1

vr;t(j; k;Or) is the occupation count of mixture

k at statej computed during the Forward-Backward train-
ing for obtaining the MLE models. Using these settings
we achieved a relatively fast convergence of the algorithms
(8-14 iterations to obtain the reported results) that did not
produce negative Gaussian weights, except in a few cases
for models with 16 Gaussians per state. This problem was
solved, as usual, increasing the value ofD.
Variances were not reestimated because preliminary exper-
iments showed that their value almost always decreases at
the end of the reestimation process reducing the generaliza-
tion capabilities of the models.
The first two experiments were performed using MMIE mod-
els with 1 and 2 Gaussians per state, their results are given
in the second row of the table confirming that discrimina-
tive training is indeed a powerful approach for reducing the
error rate in this small vocabulary recognition task. In par-
allel, we tested the corresponding models trained by means
of the�-criterion with�(r) � 2=T (r). Since the obtained
improvements with respect to the classical MMIE were sig-
nificant with respect to a 95% confidence interval, we did
not train any further MMIE model with a different number
of Gaussians per state.
The results of the third rows confirm the importance of us-
ing a nonlinear combination of the competing word prob-
abilities as a classification measure rather than simply re-
lying on the training set errors. The relative improvements
are, of course, reduced increasing the number of parameters
per state. This is evident comparing the�-criterion results
with 4 and 16 Gaussians per state respectively. One of the
reasons for this effect is that recognizing with more precise
models the utterances in the training set obviously decreases
the number of errors and near-misses, reducing the size of
the reestimation set as shown in the last rows of Table 1.
Finally, constant, but marginal improvements are obtained
using the frame-dependent weights.

6. CONCLUSIONS

We have developed a corrective training technique that has
been experimented using as a testbed an isolated word recog-

nition task. We have argued that, since it accounts for er-
rors and near-misses in the training set, it has the potential
for outperforming the classical MMIE training approach.
The results of our experiments confirm our findings giving
a 16% relative improvement over MMIE models and from
18% to 42% with respect to MLE models. It is worth noting
that discriminatively trained models with a single Gaussian
per state give better results than MLE trained models even
with 16 Gaussian per state.
Work is in progress to adapt the� parameter at each itera-
tion.
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