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ABSTRACT

In this paper, a formally unifying approach for a class of discri-
minative training criteria includingMaximum Mutual Information
(MMI) and Minimum Classification Error(MCE) criterion is pre-
sented, including the optimization methods gradient descent (GD)
andextended Baum-Welch(EB) algorithm. Comparisons are dis-
cussed for the MMI and the MCE criterion, including the deter-
mination of the sets of word sequence hypotheses for discrimina-
tion using word graphs. Experiments have been carried out on
theSieTill corpus for telephone line recorded German continuous
digit strings. Using several approaches for acoustic modeling, the
word error rates obtained by MMI training using single densities
always were better than those for Maximum Likelihood (ML) us-
ing mixture densities. Finally, results obtained for corrective train-
ing (CT), i.e. using only the best recognized word sequence in ad-
dition to the spoken word sequence, could not be improved by
using the word graph based discriminative training.

1. INTRODUCTION

In an increasing number of applications discriminative training cri-
teria such asMaximum Mutual Information(MMI) [6] and Mini-
mum Classification Error(MCE) [1] have been used. In MCE
training, an approximation for the error rate on the training data
is optimized, whereas MMI optimizes thea posterioriprobability
of the training utterances and hence the class separability. Based
on [6], we present a formally unifying approach for a class of dis-
criminative criteria including the MMI and the MCE criterion, thus
extending a comparison done in [7]. In a previous study [9], we
also found a unifying approach for the optimization methods gra-
dient descent andextended Baum-Welch(EB) algorithm which was
transfered to the unified criterion presented here.

Experimental results are presented for theSieTill corpus for
telephone line recorded German connected digit strings. In order
to investigate the abilities of discriminative training to improve ML
training results, we performed comparative experiments for sev-
eral approaches of acoustic modeling, such as single vs. mixture
densities, pooled vs. state specific variances and an optional linear
discriminant analysis (LDA).

Following previous studies [9], we also performed experiments
comparing GD with EB optimization for MMI training of mixture
densities showing no significant differences. Furthermore, for de-
termining the sets of competing word hypotheses for discrimina-
tion, we performed experiments using CT [6], or word graphs for
efficient representation of all competing word hypotheses. These
experiments were initialized with our best results using CT, where

only the best recognized word sequence is used for discrimination.
We did not observe further improvements in word error rate, al-
though in case of the use of word graphs a further convergence of
the criterion was found.

2. DISCRIMINATIVE TRAINING

The training data shall be given by training utterancesr = 1:::R,
each consisting of a sequenceXr of acoustic observation vectors
xr1; xr2; :::; xrTr and the corresponding sequenceWr of spoken
words. Thea posteriori probability for the word sequenceWr

given the acoustic observation vectorsXr shall be denoted by
p�(WrjXr). Similarly, p�(XrjWr) andp(Wr) represent the ac-
cording emission and language model probabilities respectively.
In the following, the language model probabilities are supposed
to be given. Hence the parameter� represents the set of all pa-
rameters of the emission probabilitiesp�(XrjWr). Finally, let
Mr denote the set of word sequences, which are considered for
discrimination in utterancer. A class of discriminative training
criteriaFD including MMI and MCE could then be defined by the
expression

FD(�) =
RX
r=1

f
�
log

p�(Wr)p
�
�(XrjWr)P

W2Mr

p�(W )p��(XrjW )

�
:

The choice of the exponent�, the smoothing functionf and the set
Mr of word sequences for discrimination decide which criterion
is represented. In particular, choosing� = 1 andf(�) = � yields
the MMI criterion. On the other hand, using the sigmoid func-
tion f(�) = �1= [1 + exp(2��)] yields an equivalent version of
the MCE criterion, which is to be maximized. Ideally, in case of
the MMI criterion the setMr would contain all possible word se-
quences. In practice,Mr is obtained through a recognition pass
and is represented byN -best lists or word graphs. For MCE the
spoken word sequence has to be excluded from this set. The contri-
bution of each competing sentence to reestimation is controlled by
the exponent�, where very large values of� lead to a maximum
approximation. For the MMI criterion the latter is called correc-
tive training (CT), where only the best recognized word sequences
are used for discrimination. The smoothing functionf leads to
an optional weighting on the level of whole training utterances, as
can be seen in the following derivation of the iteration equations
for the case of Gaussian mixture densities.

An optimization of the class of discriminative training crite-
ria defined above tries to simultaneously maximize the emission
probabilities of the spoken training sentences and to minimize a



weighted sum over the emission probabilities of each competing
sentence given the acoustic observation sequence for each train-
ing utterance. Thus, these criteria optimize the class separability
according to the words under consideration of the language model.

2.1. Parameter Optimization

One possibility to maximize discriminative training criteria con-
sists of a gradient descent with the following reestimation formula
for the parameters:

�̂ = �+ � �
@FD(�)

@�
:

A mixture density for an acoustic observation vectorx given an
HMM states shall be denoted byp(xjs; �s). The according pa-
rameters�s of a mixture density are the weightscsl and parame-
ters�sl of densitiesl of the mixture, and mixture densities shall be
calculated in maximum approximation. Then the derivative of the
general discriminative criterionFD with respect to parameters�sl
is given by:

@FD(�)

@�sl
= �sl

�
@ log cslp(xj�sl)

@�sl

�
;

where the discriminative averages�sl are defined by:

�sl (g(x)) = �
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fr

TrX
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(
rt(s;Wr)� 
rt(s))

� �rt(ljs) g(xrt);
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X
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where we have utterance weightsfr which have to be considered
if the smoothing functionf is not the identity,

fr = f 0
�
log

P�(XrjWr)P (Wr)X
W

P�(XrjW )P (W )

�
:

Applying the maximum approximation for the calculation of mix-
ture densities, the density probabilities�rt(ljs) are determined by

�rt(ljs) = � (l; argmaxk cskp(xrtj�sk)) ;

with the Kronecker delta�(i; j). The discriminative averages also
make use of theForward-Backward(FB) probabilities of the spo-
ken word sequenceWr:


rt(s;Wr) = p�(st = sjXr;Wr);

and the generalized FB probabilities for the total of all competing
word sequencesW defined by the setsMr:


rt(s) =
X

W2Mr

p�(Xr;W )X
V 2Mr

p�(Xr; V )

rt(s;W ):

The generalized FB probability is simply a sum over the conven-
tional FB probabilities of each competing sentence weighted by its
renormalized posterior probability.

Using the Viterbi approximation [4], i.e. calculating the FB
probabilities from the according time alignment, the sum over all

competing word hypotheses for calculation of the generalized FB
probability could be separated from the time alignment. Then the
according word-posterior probabilities needed could be calculated
efficiently by applying a FB calculation scheme on the basis of
word hypotheses on a word graph. Thus word graphs could also
be used, if� is not 1, which would not be possible if the word
graph FB scheme is applied on state level already, as done for the
MMI criterion in [10]. It should be noted that the calculation of
word-posterior probabilities also finds applications in other areas
of speech recognition like the determination of confidence mea-
sures, e.g. [8].

Discriminative training with the MMI criterion usually applies
an extended version ofBaum-Welchtraining, the EB algorithm [5,
6]. We extended this approach to the general criterionFD, which
could be maximized via the following auxiliary function:
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s
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Ds

Z
dx p(xjs; �s) log p(xjs; �̂s);

which is to be optimized iteratively. Differentiation with respect to
the iterated parameterŝ�sl leads to the following expression, from
which reestimation formulae can be derived:
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Using discriminative averages for writing down reestimation
formulae yields expressions which are formally independent of the
particular criterion chosen. Thus, differences of criteria are intro-
duced via the discriminative averages only and comparisons could
be reduced to this level.

Performing the EB algorithm, we obtain the following reesti-
mation equations for the means�sl, state specific diagonal vari-
ances�2s and mixture weightscsl of Gaussian mixture densities:
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An alternative would be to perform gradient descent on the cri-
terion FD. Doing this and comparing both sets of reestimation
formulae we arrive at step sizes for gradient descent [9], which
lead to reestimation formulae, which differ only for the variances



by terms containing the squared step sizes of the means of the ac-
cording mixture:

�̂sl;GD = �̂sl;EB

�̂2s;GD = �̂2s;EB +
X
l

�sl(1) +Dscsl
�s(1) +Ds

(�sl � �̂sl;BW)
2

ĉsl;GD = ĉsl;EB:

The reestimation formulae for the mixture weights do not result
directly from the optimization of the criterion but are smoothed
versions for better convergence [5]. For this version the discrimi-
native averages�s(l), as defined in Equation 1, are separated ac-
cording to the FB probability for the spoken (spk) word sequence
and the generalized (gen) FB probability for the total of all com-
peting word sequences.

Setting� = 1 for comparison purposes, we observe only two
differences between MCE and MMI. Firstly, for MMI the spoken
word sequence is considered for discrimination, whereas it has to
be excluded when using MCE. Since the word-posterior proba-
bilities of correct words securely recognized will be nearly 1, the
differences of FB probabilities in the discriminative averages for
MMI are nearly zero, such that those words do not contribute sig-
nificantly to reestimation. Secondly, the worse the recognition re-
sults for an utterance are, the more it will contribute to MMI rees-
timation, which is not the case for MCE. For MCE, hopelessly bad
recognized utterances together with securely recognized ones are
weighted down as a whole according to their posterior probabili-
ties via the smoothing functionf .

Fast convergence is achieved if the iteration constantsDs are
chosen such that the denominators in the reestimation equations
and the according variances are kept positive:

Ds = h �max

�
Ds;min;

1

�
� �s(1)

�
: (2)

Here,Ds;min denotes an estimation for the minimal iteration con-
stant which guarantees the positivity of the variance in states and
the iteration factorh > 1 controls the convergence of the iteration
process, high values leading to low step sizes. The constant� > 0
is chosen to prevent overflow caused by low-valued denominators.
Similarly, the iteration parametersCs for the mixture weights are
chosen such that all weights are positive:

Cs = max
l

(
�

"
�spksl (1)

�spks (1)
�

�gensl (1)

�gens (1)

#
; 0

)
+ �;

with a small constant�.

3. RESULTS

Experiments were performed on theSieTill corpus [2] for tele-
phone line recorded German continuous digit strings. TheSieTill
corpus consists of approximately 43k spoken digits in 13k sen-
tences for both training and test.

The recognition system for theSieTillcorpus is based on whole
word HMMs using continuous emission distributions. It is charac-
terized as follows:

� Gaussian mixture emission distributions,

� pooled or state dependent variance vectors,

� gender dependent whole word HMMs for 11 German digits
including ’zwo’ and gender dependent silence models,

Table 1: Comparison of recognition results on theSieTill corpus
for ML and discriminative training for different acoustic modeling
and training techniques.

corp LDA var dns crit opt WER[%]
del ins tot

test no PV 1 ML - 0.7 1.0 5.6
4 ML - 0.4 1.8 4.8
1 CT GD 0.8 0.6 3.3

SV 1 ML - 0.6 1.6 5.2
4 ML - 0.5 1.7 4.6

25 ML - 0.4 1.6 4.1
1 CT GD 0.8 0.7 3.4

yes PV 1 ML - 0.5 0.7 4.0
CT GD 0.5 0.7 2.8

4 ML - 0.3 1.0 3.0
CT GD 0.6 0.5 2.5
CT EB 0.6 0.5 2.6
WG GD 0.7 0.5 2.6

� per gender 132 states plus one for silence,

� 12 cepstral features plus first derivatives and the second
derivative of the energy.

The baseline recognizer applies ML training using the Viterbi ap-
proximation [4] which serves as a starting point for the additional
discriminative training. A detailed description of the baseline sys-
tem could be found in [11].

In Table 1 the recognition results obtained for several acoustic
modeling approaches using maximum likelihood training are indi-
cated by ML. For ML training, state specific variances (SV) gave
better results than pooled variances (PV) for both single and mix-
ture densities. The best results for state specific variances were
obtained using approximately 25 densities per mixture, whereas
for pooled variances the best results were already obtained for ap-
proximately 4 densities per mixture. Adding linear discriminant
analysis (LDA) to using pooled variances gave our best ML results
with 4:0% word error rate for single densities and3:0% word error
rate for mixture densities with approx. 4 densities per mixture. It
should be noted that the LDA gave a relative improvement of over
60% in word error rate for pooled variances and still more than
25% compared to state specific variances without LDA.

For CT, an iteration factor ofh = 1:2 leads to relatively
smooth convergence. Fig. 1 shows a plot of the MMI criterion
for the male portion of theSieTill training corpus for CT using
both GD and EB optimization starting from the according ML re-
sult using Gaussian mixture densities with approx. 4 densities per
mixture, pooled variance vector and LDA. After CT has converged
(indicated by the vertical line), a plot of the MMI criterion using
word graphs for discrimination (WG) with an average number of
about 47 word hypotheses per spoken word is added. Certainly the
absolute values of the MMI criterion using CT and WG respec-
tively are not comparable. In a region where CT does not converge
any more, the MMI criterion clearly converges, although the word
error rate obtained by CT is even slightly better than that for WG
(cf. Table 1). The reason for this could be, that an utterance, which
is correctly recognized does not contribute to reestimation for CT.
Thus, also incorrectly hypothesized word sequences for such ut-
terances are not considered for discrimination using CT, even if
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Figure 1: MMI criterion for the male speakers of theSieTill train-
ing corpus for corrective training (CT) and the use of word graphs
(WG).

their posterior probabilities are only marginally smaller than the
maximum. Contrarily, using WG would try to reduce the poste-
rior probability of such marginal second best hypotheses, although
this might not be necessary, so far as these wrong hypotheses keep
being second best at most. Such, this further rearrangement in the
posterior probabilites done using WG might have no or even nega-
tive effects on the word error rate in comparison to CT, as observed
in our experiments. Table 1 summarizes the recognition results for
theSieTill test corpus using Gaussian emission densities. For dif-
ferent levels of acoustic modeling, we compare ML results with the
according discriminative training results using the MMI criterion
with corrective training (CT) approximation and gradient descent
(GD) optimization. The largest improvements using CT were ob-
tained for our simplest system using single densities with pooled
variances (PV), where the ML training word error rate was reduced
by 40% relatively. Although the initial ML result for single den-
sities with density specific variances (SV) was better than the ac-
cording result for pooled variances, the improvement obtained by
additional CT was smaller, and the word error rate obtained was
even slightly smaller than that for CT using single densities with
pooled variance. It should be noted, that the result for CT us-
ing single densities with density specific variances was even bet-
ter than the according ML result using mixture densities with 25
densities per mixture. The best results for CT were obtained us-
ing mixture densities with 4 densities per mixture, pooled variance
(PV) and LDA, leading to a word error rate of2:5%, which is the
same as reported in [2]. Still, the according result for CT with
single densities is slightly better than the results for ML training
using 4 densities per mixture. Finally, the best CT result using GD
optimization was compared to CT using EB optimization, showing
no significant difference for mixture densities as was the case for
single densities [9].

4. CONCLUSION

We presented a formally unifying approach for a class of discri-
minative training criteria and optimization methods including the
Maximum Mutual Information(MMI) and theMinimum Classifi-
cation Error (MCE) criterion which were compared. For the MMI
criterion, experiments were performed on theSieTill corpus. Rel-
ative improvements in word error rate of up to40% compared to
ML training were obtained, and MMI training using single densi-
ties always produced better results than ML training using mixture

densities. For the best initial result using ML training, the relative
improvement obtained by a subsequent MMI training was about
1/6, leading to a word error rate of2:5%. This result, which was
obtained for corrective training, i.e. using only the best recognized
word sequence in addition to the spoken word sequence, could not
be improved by using the word graph based discriminative train-
ing.
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