
COMPLEX FREQUENCY RESPONSE FIR FILTER DESIGN

Worayot Lertniphonphun, James H. McClellan

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA 30332±0250, USA.

(Tel: 404-894-6291. Fax: 404-894-8363. Email: worayot, mcclella@ece.gatech.edu)

ABSTRACT

This paper provides an algorithm for designing FIR ®lters that ap-
proximate both magnitude and phase of the frequency response.
The new algorithm produces a ®lter optimized under the weighted
Chebyshev norm. The algorithm starts from a ®rst stage unopti-
mized ®lter designed by aRemez-like algorithm and then uses shifted
Dirichlet kernel functions to reduce large error peaks and converge
to an equiripple set of peaks. The error function is modi®ed at each
iteration by subtracting a best-®t linear combination of kernel func-
tions due to the large error peak(s). For one length-100 example,
the computation of this algorithm was less than that of the complex
Remez by two orders of magnitude.

1. INTRODUCTION

Finite impulse response (FIR) digital ®lters have been used formany
applications. Linear-phase designs are popular and easy to obtain,
but introduce a delay equal to 1

2
(L−1) where L is the ®lter length.

Low-delay linear-phase ®lters, therefore, have to be short. Other
applicationsmight not require the linear-phase property which con-
strains the ®lter's impulse response to be real and even. If we re-
move the linear-phase constraint, we must do ®lter design by ap-
proximating a complex-valued frequency response.

Complex Chebyshev approximation is a dif®cult mathematical
problem, because the Alternation Theorem takes a much weaker
form. Nevertheless, some algorithms have been developed for this
case, including one the complex Remez [1, 2] (cremez in MAT-
LAB). This algorithm has two main stages: The ®rst stage general-
izes the classical Parks-McClellan algorithm. This stage converges
very fast, but for many speci®cations, the output of the ®rst stage
is not optimum. Therefore, a second stage is needed to re®ne the
solution and drive it to the minimum Chebyshev error. This stage
uses a ascent/decent algorithm that can be proven to converge. In
practice, the cremez algorithm does converge to the optimum for
a large set of speci®cation, but it might require an unacceptable
amount of computation.

In this paper, a new second stage algorithm is proposed. This
alternative algorithm was adapted from the projection method of
[3] for designing linear-phase FIR ®lters. The algorithm in [3]
jumps back and forth between the time and frequency domain (us-
ing the FFT) and imposes constraints in each domain. The iteration
is, in effect, a ªprojection onto convex setsº method. The algorithm
in [3] could be applied to the complex case, but we have found it
better to change the strategy somewhat. Starting from the output of
the ®rst-stage of cremez, we have information needed for setting
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the threshold used in the iteration. In addition, we can make the
threshold adaptive to obtain convergence to the minimal Cheby-
shev error. Finally, we are using different frequency-domain con-
straints to modify the frequency response. Even though this algo-
rithm can converge quickly to have a relatively small error, making
it converge to the theoretical optimum is still very slow. Nonethe-
less, our empirical testing shows that the performance of this new
method is better than the second stage in cremez.

2. ALGORITHM DESCRIPTION

2.1. Preliminary Stage

The ®rst step in the algorithm is to generate a FIR ®lter whose fre-
quency response is close to the ideal case. There are two ways of
generating a good starting ®lter: (1) The ®rst stage algorithm from
cremez. This stage sometimes produces the optimum ®lter, but
if it does not, it still forces L of the error peaks to be equal to the
minimum error peak value which is also a lower bound on the ®-
nal Chebyshev error and is close to the optimum error. There exist
only a few peaks that have magnitude greater than this minimum
peak. (2) The clipped inverse FFT (cifft) of the ideal response.
This is equivalent to a rectangular window design. Normally, this
method gives a good response except for the band edges where we
have discontinuities. One drawback of this initialization for multi-
band ®lters is that the ideal ®lter has no transition band, so we must
adjust its cutoff frequency to match the given transition band. The
quality of this starting ®lter is less reliable, but does work quite well
in some examples.

No matter which starting ®lter we choose, its most important
property is that the minimum error peak has to less than the opti-
mum error. If we fail to have this property, we will not be able to
run our algorithm to get the optimum ®lter. In addition we need an
estimate of the ®nal optimum error, which can be obtained from a
linear-phase ®lter with similar specs, or from the minimum error
from the ®rst stage of cremez. In a sub-optimum error function
we would like to measure how close to the optimum we might be,
so we can use the ratio of the maximum error peak to the minimum
error peak as an indicator of how close to equiripple we are.

2.2. Modify Error

The optimumChebyshev-norm®lter has an equiripple error and the
number of its equal error peaks can be counted. To get the equirip-
ple error shape, we iteratively modify the error function by sub-
tracting a known response from the largest peak(s).

Subtracting the FIRmodi®er sequence is really the heart of this
algorithm. First, we present the general idea of this modi®cation.
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Figure 1: Error function before and after using the modi®cation
signalm(n).

Consider a length-L sequence, m(n), whose frequency response
M(ω) has only one peak at ωp. One of the sequences in this class
is the modulated rectangular sequence,

m(n) =

{
ze−jωpn for 0 ≤ n ≤ L− 1
0 otherwise,

(1)

where z is a complex constant andωp is an arbitrary frequency. The
frequency response of this sequence is given by

M(ω) = ze−j
L
2 (ω−ωp) sin(L

2
(ω − ωp))

sin( 1
2
(ω − ωp))

. (2)

This function has its peak at ωp with magnitudeL and its mainlobe
width is 4π

L
. It has regularly spaced zeros separated by 2π

L
, and a

maximum sidelobe height that is approximately L/5.
We de®ne the ®lter design error function by

E(ω) = H(ω)− I(ω), (3)

where H(ω) is the FIR frequency response and I(ω) is the ideal
case. We de®ne Hm(ω) and Em(ω) to be the modi®ed ®lter and
the modi®ed error function given by

Hm(ω) = H(ω)−M(ω)

and Em(ω) = E(ω)−M(ω)
(4)

This Hm(ω) is also a frequency response of a FIR ®lter length L.
The modi®cation is shown in Fig. 1.

Under the condition that the ideal function is continuous and
that the delay is between 0 to L− 1, we claim that if there is only
one maximum peak in the error function, we can ®nd a value for
z that reduces ||Em(ω)||∞. To ®nd this coef®cient z, use the fact
that only one maximum peak occurs at ωp. Since E(ω) < E(ωp)
when ω 6= ωp, we can ®nd ε such that |E(ωp)| − ε > |E(ω)| for
all points except possibly some small neighborhood of ωp. This
means that if we pick

z = − ε
L

E(ωp)

|E(ωp)|
= − ε

L
ejθp (5)

where θp is the angle of the complex error at ω = ωp, then the er-
ror at ωp will be reduced to |E(ωp)| − ε. The other error maxima
will be no larger thanmax{|E(ωi)|+ε}. When ε is small enough,
the maximum error will still occur inside the neighborhood of ωp,
but the maximum will have been reduced. If we choose the largest
possible ε, the modi®ed error function will have two or more maxi-
mum peaks. An error function with several equal maxima can also
be treated. Suppose that the error function has n equal maxima.
First, de®ne the Dirichlet kernel as:

D(ω) =
sin(L

2
ω)

sin( 1
2
ω)
e−j

(L−1)
2 ω

The maximum magnitude of thisD(ω) isD(0) = L. To generate
the modi®ed error function needed in (4), we use

M(ω) =

n∑
i=1

ziD(ω − ωpi) (6)

where ωpi are the equal-error peak locations.
Wewant to reduce each of the peaks by ε, sowe needM(ωpi) =

ε ejθpi . We can ®nd coef®cient zi by forming a matrix equation,
Dz = εd, where

D =


L d1,2 d1,3 · · ·
d2,1 L d2,3

...
. . .

dn,n−1 L



z =


z1

z2

...
zn

 and d =


ejθp1

ejθp2

...
ejθpn


where di,j = D(ωpi − ωpj ).

Note that the off-diagonal elements of D are much less than
L, so D is unlikely to be singular. We can ®nd zi by computing
z = εD−1d. We also have to choose ε to be positive and small
enough to have the new maximum error equal to all reduced ones.
This turns out to be possible until the error function is tight (min
≈ max), or we cannot add a nonzero modi®ed function to reduce
the peak error. Note that the equal peak height is not necessarily
the stopping point, we also need a minimum number of ripples to
satisfy the Alternation theorem criterion for the optimum ®lter.

So far, we have only proven the existence of a better error func-
tion but we do not yet have a practical algorithm, because we have
to compute the inverse matrixD and ®nd ε (by searching). We now
propose another algorithm which has less comparison requirement
and work on many peak simultaneously. This algorithm tries to
make the large peak(s) be equal to an average peak value. Each
iteration of this algorithm is described by these steps

1. calculate the error function, E(ω)

2. extract all the peaks of |E(ω)|
3. compute the average peak weighted error value

4. set a threshold and a desired error, (8) and (9)

5. compute the modifying function,M(ω)

6. useE(ω)−M(ω) to generate the new error function for the
next iteration



The threshold and desired error can be computed from the av-
erage error, minimum error and maximum error. To make the algo-
rithm as fast as possible, all peaks that are greater than the threshold
are included in the set to be modi®ed. Since the modifying func-
tion (6) changes the error function over all ω, including too many
peak points can cause the algorithm to perform poorlyÐit might
fail to converge and it will require much more computation. The
desired error should be chosen smaller than themaximum error, but
we cannot set it too small because it will then cause the algorithm
to fail to converge. The average peak error is a compromise to use
as the desired error, but in some of our experiments we have picked
the desired error different from the average error to help the algo-
rithm converge better.

The algorithm is formulate for the general complex case, but
we can also use if to design complex-conjugate ideal frequency re-
sponses (where the ®lter has real coef®cients). By using real coef-
®cient ®rst stage, we use the same threshold and desired error for-
mula but ®nd only peaks where ω ≥ 0, and set the modifying se-
quence to be real:

m(n) =

{
ze−jωpn + z∗ejωpn 0 ≤ n ≤ L− 1
0 otherwise

(7)

3. IMPLEMENTATION

This paper used the modulated rectangular sequence as the modify-
ing function because it has a small mainlobe which is close to the
average distance between peaks of a typical error function. This
inter-peak distance is much smaller near the transition band, but we
can shift the peak of the modifying function into the transition band
when the maximum error occurs at the band edge. Other types of
modifying function could be also used. The threshold error and de-
sired error are computed by

Eth = tEavr + (1− t)Emax (8)

Eds = dEavr + (1− d)Emax (9)

The parameters t and d are used to compute the threshold and
desired error as a linear combination of Eavr and Emax. By using
t and d between −1 and +1, we will have an algorithm where the
maximum error converges to the average error. We must choose t
small enough tomakemany peaks small simultaneously, but choos-
ing this parameter too small can cause unnecessary computation.
The desired error should be close to the average error, so d should
chosen to be a small constant. One suggestion for setting these pa-
rameters is as follows: pick t between 0.4 and 0.6 and d between
−0.2 and 0.2. A negative value for d can help the algorithm con-
verge faster, but we have to limit Eds to be greater than 0 to avoid
divergence. When the bands are weighted, setting Eds too small
can make it hard to converge in the bands with small error.

4. COMPUTATION AND CONVERGENCE

This algorithm formulation is simple, but it has a computational ad-
vantage because it has only one FFT per iteration and many fewer
comparisons than [3]. Normally, this algorithm converges faster
than cremez, but the algorithmmight fail to converge when peaks
of the error are very small which is the case when we have a wide
transition band. Themain factor inhibiting convergence in this case
is that the modifying function (6) is very small, so it becomes hard
to change the frequency response in the transition band.
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Figure 2: Frequency response of example 1. The optimized Cheby-
shev error is δopt = 0.0053.

The error modi®cation step has two other problems with re-
spect to convergence. First, the algorithmmight converge to an un-
optimized ®lter when the average error of the ®rst stage is too large.
We would have to change the initializing ®lter to solve this prob-
lem. The second problem is that the algorithm might diverge or
stop short of convergence. This problem occurs rarely, but happens
when the modi®ed error function increases at the peak-error maxi-
mum point. This can occur when the summation in (6) consists of
several shifted Dirichlet kernels whose tails cause the peak error
to increase. We can solve this problem by changing the threshold
level or setting the desired error to be closer to the maximum error
thereby reducing the effect of other peak-error points.

5. EXAMPLE

This part will show three ®lter designs: bandpass ®lter with delay
less than half of it length and equal error weighting in the stop band
and pass band, a lowpass ®lter with wide transition band and low
delay, and a ®lter with 4 complex curves on 4 speci®c bands. All
these cases cannot be designed by only ®rst stage cremez. The
®rst example shows a primary application of this ®lter design al-
gorithm. The second example shows how the ®rst stage affects the
output. The third example shows that the algorithm can converge
in any speci®cations.
Example 1. A length-100 bandpass ®lter with stop bands at nor-
malized frequency 0 to 0.1 and 0.4 to 0.5, pass band at normal-
ized frequency 0.125 to 0.375, and overall delay equal to 40 sam-
ples. Using cremez as the ®rst stage, frequency response and de-
lay are shown in Fig. 2. Because the modifying function is very
small when we approach convergence, we stop the algorithm when
δmax = 0.00536 and δmin = 0.00534. So, the error response
is not exactly equiripple. Compared to a linear-phase ®lter with
0.0042maximum error, this ®lter has nearly the samemaximum er-
ror but a lower delay. The output of the ®rst stage cremez is not
purely real, but the imaginary part of its coef®cients is very small.
Consequently, we can use the real part to implement the ®lter and
get almost the same frequency response.

The computation of this algorithm is 100 times faster than that
of cremez. To illustrate further the advantage of the new algo-
rithm, a length-1000 bandpass ®lter with its stop bands at normal-
ized frequency 0 to 0.1 and 0.4 to 0.5, pass band at normalized fre-
quency 0.1025 to 0.3975, overall delay equal to 300 was designed.
Table I summarizes the design times which differ by 103.

We can also specify weighting in the design. For this speci®ca-
tion, changing the weights to be 10 in stop band and 1 in pass band,
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Figure 3: Example 2. (a) error of complex Remez, (b) error of new
algorithm using cremez initialization, (c) error of new algorithm
using cifft initialization.

the algorithm gives a ®lter that has a stop band deviation of 0.0015.

Example 2. A length-30 lowpass ®lter with pass band at normal-
ized frequency 0 to 0.15, stop band at normalized frequency 0.3 to
0.5, and overall delay equal to 12 samples. We use two starting ®l-
ters: ®rst stage cremez and cifft. The three error responses are
shown in Fig. 3. Note that this speci®cation can be designed to have
its maximum error less than 1.5×10−4 (the ®rst stage of cremez
has δ = 1.2 × 10−4). Figure 3 shows that cremez has, in fact,
failed to converge for these specs. The second stage of cremez
uses an ascent/decent algorithm which was proven to converge to
optimum case for a continuous function. The numerical implemen-
tation, unfortunately, does not obtain the converged solution. We
can see that the convergence of the new algorithm is strongly de-
pendent on the ®rst stage. These types of ®lters have very small
error which is always a problem when designing ®lters with large
transition bands. The starting ®lters from the cremez ®rst stage
are not close enough to the optimum response.
Example 3. A length-80 ®lter speci®ed by

A(f) =


2|f | delay = 15 −0.48 < f < −0.27
2 + i delay = 50 −0.23 < f < −0.02
4f2 delay = 70 0.02 < f < 0.23
−ln(2f) delay = 25 0.27 < f < 0.48,

Other intervals are don't care (transition bands), and f = ω/2π is
normalized frequency.

The optimized response of the ®lter is shown in Fig. 4. This il-
lustrates an ef®cient way of designing a ®lter for some applications.
We can specify a ®lter with different delay in each frequency band.
We also can design a ®lter with any desired complex gains for each
frequency.

6. SUMMARY

This paper presents a new algorithm for designing FIR ®lters with
complex frequency response and possibly a complex impulse re-
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Figure 4: Frequency response of example 3. The maximum error
is 0.00537 while cremez gets 0.00538.

FILTER cremez new algorithm # iterations
(¯ops) (¯ops)

Example 1 1.8× 1010 8.2× 107 90
Example 2 1.9× 107 1.9× 107 223
Example 3 8.4× 108 2.9× 107 58
Long ®lter 1 2.24× 1013 5.2× 1010 220
Long ®lter 2 2.24× 1013 2× 109 70

Table 1: Computation comparison between the new algorithm and
cremez. Long ®lter 1 is a length-1000 band pass ®lter with
cremez initialization. Long ®lter 2 is a length-1000 band pass ®l-
ter with cifft initialization.

sponse. Since the real and even symmetry property of linear-phase
®lters is not needed, the iteration is actually much simpler in this
case.

Initialization of the algorithm uses any available ef®cient algo-
rithm to return a ®lter whose peaks are close to equiripple. Then the
large error peaks are modi®ed by using a weighted sum of shifted
Dirichlet kernels. This reduces magnitude of maximum error and
makes it converge to the average peak error. A threshold and de-
sired error are introduced as parameters of the algorithmic imple-
mentation.

The algorithm will dramatically improve the output from the
®rst stage of cremez, but the solution is not guaranteed to be the
true Chebyshev optimum. The big difference between this algo-
rithm and cremez is the amount of computation. We can also de-
sign very long ®lters by this algorithm. Table 1 shows the compar-
ison between the algorithm and cremez.
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