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ABSTRACT unique spectral information provided by hyperspectral sensors, we
) ) . . o model the data, after removal of the spatially varying mean, as a
One aim of using hyperspectral imaging sensors is in discriminat- 3_.p oncausal Gauss-Markov Random Field (GMRF).
ing man-made objects from dominant clutter environments. Sen- o begin in section 2 by summarizing the relevant prior work
sors like Aviris or Hydice simultaneously collect hundreds of con- .-+ has been done. In section 3 we detail our GMRF model for

tiguous and narrowly spaced spectral band images for the samg,y nerspecral data. In section 4 we mathematically formulate the

scene. The challenge lies in processing the corresponding larg&etection problem and detail the estimation method by which the
volume of data that is collected by the sensors. Usual implementa-yqatector is able to locally adapt to the varying background statis-

tions of the Maximum-Likelihood (ML) detector are precluded be- ieq of the data. Section 5 outlines the overall detection algorithm
cause they require the inversion of large data covariance matrices ¢ section 6 presents our preliminary research results regarding

We apply a Gauss-Markov random field (GMRF) model to derive a y,q gatistical nature of the clutter background of hyperspectral im-
computationally efficient ML-detector implementation that avoids ages

inversion of the covariance matrix. The paper details the structure
of the GMRF model, presents an estimation algorithm to fit the
GMREF to the hyperspectral sensor data, and finally, develops the 2. PRIOR WORK

structure of the ML-detector.

There is limited work published concerning the processing of hy-
perspectral images. The work available in the literature mostly
focuses on compression. The detection work has generally been

. . intended for geological classification of ground surfaces and not
This paper addresses the problem of detection of man-made Ob'for the detect?on ofgman-made objects 9

Jects l.JSing ‘Wage . o_btain_ed from hyperspeciral sensors. Sen- Extensions of the detectors developed for other sensags,
sors like Aviris and Hydice simultaneously collect hundreds of the detectors in [2, 7] for multispectral images, are computation-
contiguous and narrowly spaced spectral bands. The spectral bandgIIy hampered by the required inversion of the data covariance

typically extend from the visible to the near-infrared portion of matrix. For hyperspectral images, this covariance matrix is ex-

tsheegtlfzflt:gg)?gt?oertll?sstﬂzggudrgﬁgg 2 aedc\{?z:l]ltzigii;tfutlg\illsngb?;i?llg '%;ceedingly large. Also, these previous works usually make addi-

P h pixel in the im ¢ Thi P tral si ?1 ture varies d ndtional assumptions, like spatially uncorrelated clutter or negligible
€ach pixetin the image set. This spectral signature varies depe 'spatial-spectral cross-correlations, which make them sub-optimal.
ing on what is present in the pixel, thus providing a means for

g . . e We show in the following sections how our GMRF model not
discriminating between objects of varying composition.

The challenge of using hyperspectral data is in developing al- only captures the fully spatially and spectrally correlated nature of

orithms that can efficiently process the massive amounts of datathe hyperspectral data, but imposes structure on the second order
g y P . . statistics of the clutter leading to significant reductions in the com-
that are collected by the sensors. For instance, with data from

X : : utational complexity of our detector. Specifically, the use of the
the Naval Re_sear<_:h L_aboratory s Hydice sensor, 210 IMAges, €acl\RF model provides us with a known structure for the inverse of
300 x 300 pixels in size, are collected. Typically each pixel is

represented by 12 bits resulting in over 200 Mbytes of data for the clutter's spatial-spectral covariance matrix. By dealing directly

. . . \gith the inverse, no matrix inversion is necessary.
just one scene. Data sets of such magnitude make processing an

storage difficult, and real-time transmission practically impossible.

Therefore, much of the work with hyperspectral imagery focuses 3. GMRF MODEL

on either compression of the data for purposes of storage and trans-

mission or on developing accurate and efficient models of the hy- Unlike prior work, see [2, 7], we use a 3-D GMRF model to de-

perspectral data in order to decrease the computational complexityscribe pixel radiance. The 3-D model assumes both spatial and

of the algorithms used for processing. spectral correlation among the image pixels. Each pixel location
This paper develops an efficient model for the hyperspectral in the hyperspectral image set is referenced by the variahtel

data that uses Gauss-Markov random fields (GMRF). We use thisthree sub-indicegj, andk, which indicate the spatial location and

model to design the Maximum-Likelihood (ML) detector. Our ap- the particular spectral band in which the pixel lies, see figure 1.

proach to ML-detection avoids the inversion of the large covari- Due to the varying nature of the statistics of the data, processing is

ance matrix which is a major obstacle to applying other detection done on windows of the image set of sixex N; = N pixel loca-

approaches [2, 7] to hyperspectral data. To capture the spatial andions. For purposes of simplifying the presentation of our proposed

1. INTRODUCTION



matrix, M ~'. GMRF theory tells us thal/ ~" is equal to25 A,

_ = NxN or, in Kronecker notation:
- Block of Pixels

M=t = L [-e (v eIy emk, )+ (In, ®In 1, ) | -

L [8o (1w, 00k, 018, ) +8s (1, ©Tn,01x; )] (3)

M~ is a structured matrix which has unknown parameters

Br, By, and3s. Estimating these parameters over different win-
dows of the data allows us to locally adapt to the background clut-
ter statistics.

Figure 1: 3-Dimensional Indexing of the Hyperspectral Image

Cube 4. PARAMETER ESTIMATION

4.1. Problem Formulation

method, we proceed by using a first-order GMRF model. Under Using the GMRF model outlined in the previous section, we now
the GMRF assumption, each pixel radiance is related to neighbor-develop a scheme for detection which reveals the advantages of

ing pixel intensities by: using our model over the models developed in previous work. The

goal of the detection stage is to find those pixels which represent

Tijk = Br(@ig-vr + Tig+or) + Bo(Ti-1)jk + T(iv1)jk) possible target locations. We formulate this as a binary hypothesis
+  Bs(Tiie—1) + Tijkt1)) + €ijk Q) testing problem where at each pixel the risk is to decide if only

clutter is present or clutter plus signal. Formally, the hypothesis
whereg;,, 3,, ands, are the Minimum Mean Square Error (MMSE) testing problem is given by
predictor coefficients for the horizontal, vertical, and spectral di- Hy: X=w
mensions, respectively, armg} is the prediction error [6]. H :X=w+r

We form a data vectoX by lexicographically ordering the  wherew is the clutter which is a zero-mean GMRF process with

sameN pixel block of data iV, consecutive spectral bands. This unknown second order statistics anid the target signal which is
provides us withV;, vectorsw(k) k = 1, ..., N, each of length considered to be deterministic and known. The pdfs for the data
N. By stacking theV,, vectors, we create the data vector vector under the two hypotheses are:

Ho : pajo.ig)(X | 8, Ho) =~ exp(—5tr(M ™' Mo))

Hy : pajo.ny (X | 0, Hy) = ——L— exp(—Ltr(M~'1M))
which is sizeN, N x 1. An error vectorg, is formed in the same (:| v N 2NNk M| ’
manner by beginning with the matrix of prediction errosrgy. whereM, = XX andM; = (X — r)(X — r)” are the sample
The error vector is a sample from a zero-mean Gaussian coloredcovariance matrices arids the vector of the unknown Markov pa-
noise process which has covariarce [1, 6]. The resulting data  rameters. Examining the pdf's, it is clear that we need an estimate

X=[m0" - wN)T]"

and prediction error vectors are relatedA% = ¢ where of M~ in order to proceed with the processing. Unlike traditional
approaches in which an estimateldfis made and then inverted,
Ar Ap Y we directly estimate the inverse by using equation (3) which re-
Ay sults from GMRF theory. The estimate bf ~' obtained by using
A= o (2) equation (3), is completely determined by estimating4tsealar
o N ﬁz Markov parameters@y, By, Bs, ands?. Thisis a significant sim-
2 1

plification over previous work.

Using the Kronecker Product as defined in [3], we can compactly ) o
represent this matrix bd = In, ® 4; + H}Vk ® A where® 4.2. Optimal Estimation

symbolizes the Kronecker Product and the matriéesA., B, C, The optimal detector for a hypothesis testing problem with un-

andD are ) . h "
A =TIy, @B+ Hzlvi ®C known parameters is the GLRT defined in equation (4).
A = In; ®1D X | (H: B Hy
C = —Buln; p(X | (Ho,OmrL(0))) Hp
D = —fIn;
In,.In;, and Iy, are Identity Matrices whileHy, , Hy,, and The parameter8,, ;1) andfy, (o) are vectors of the Maximum

H}Vi are Toeplitz matrices which have zeros everywhere exceptLikelihood (ML) estimates of the unknown Markov parameters.
for the first upper and lower diagonals which are composed of all The threshold;, is determined by the Neyman-Pearson Criterion.

1's. The resulting matrid, referred to as the potential matrix, is The structured and constrained naturé\6f > makes the ML
a sparse matrix and contains all the relevant information regardingestimates computationally expensive to calculate due to a need to
the GMREF structure [1]. perform a nonlinear optimization. Thus, we present a computa-

A main advantage of this model is that we can now define a tionally less expensive LS parameter estimation approach which
Kronecker representation for the inverse of the clutter covarianceis intended to approximate the ML estimates. The LS Estimation



algorithm is based on using the constraints: " 1, = I and 5.2. Determinant Expressions

M~'M, = I whereM, and M, are the sample covariance ma-

. ) X . To make th ion ision itis n r find expression
trices defined in section 4.1. 0 make the detection decision it is necessary to find expressions

for the determinant of the spatial-spectral covariance matrix under
) each hypothesis. To do this, we use the property that the deter-
4.3. The Least Squares Algorithm minant of a matrix is equal to the product of all its eigenvalues.

In the first-order case, only four unknown Markov parameters need Thﬂeff’fe* we need to find an expression for the eigenvalues of
to be estimated. However, the constraints defined in section (4.2)M S . . .
provide(V; N; Ny )? equations for those four unknowns. This is an Beginning with equation (3), and assuming thgt = N; =

overconstrained system, so the unknown parameters are estimated/s = ™ We use propgrtles of linear algebra_l [5] and the I_<ronecker
such that the constraints are met in a LS sense. For the sake OPrOdUCt [3] to determine that the expression for the eigenvalues

brevity, the following estimation procedure will be developed only IS

under hypothesi&l,. The derivation undef; is similar and does =1\ _
> A (M) =
not warrant a discussion of its own. (0)
Using the Kronecker expression of equation (3) #6r * and 21— (B + 8o+ B) (M (Tn) N (In) M (HY))] ()
rearranging terms we obtain the following equation in terms of the a2
unknown Markov parameters wherel<i<mn, 1<j<n, 1<k<n, 1<I<n®
Bn [(INk ®In; ®H) ) A?IO] +Bv [(sz QHY ®IN; ) z\?fo] + The eigenvalues of the matrBl; as defined in [1] are
) P . A (Hyy) = 2cos (£5) for 1 < k < n. Using this expression
8 [ (#k, @1, ©1n; ) Mo | 402 (1, ®1n; ®1n; ) =Mo ®) in equation (7), we determine that there are amlgistinct eigen-

values with each of these eigenvalues repeated times. Then
distinct eigenvalues are theeigenvalues of the matrikl,,. The
é)verall expression for the determinant under assumgiigis:

By firstlexicographically ordering the matrices in equation (5),
we can write the equation in matrix notation@8 = § wheref is
a vector of the unknown parameters that need to be estimated. Th

matrix G, and vector, are: A1 N1
| 85y 1= T M (315)
G = [Gl Gz] [
n2

Q:vec(Mo) =1L [713 (1—2(Bh+By+Bs)cos (nk—fl))] (8)

where If we replace the parameter estimates in Equation (8) with the
L\~ § . estimates obtained assuming hypothdsisis true, we obtain the

G = [eee[(tv@vomk )Mo vee[ (1w, ®Hk, ®1N; ) Mo] | determinant oft7, 7. Computationally, equation (8) requires the
Gs = [vec [(H}Vk ®In, OIN; ) 1\70] vee (sz ®In, ®1NJ,)] multiplication of onlyk scalar values.

The estimates for the Markov parameters are obtained from the
pseudo-inverse or LS solution whichdiss = (GTG) ™' G™4

The most computationally demanding operation in the equa- The previous sections have explained the theoretical foundation
tion is the inverse oflaTG. However, for a first order GMRF,  of our proposed GMRF Detection method. The success and sig-
this matrix is of dimensiorl x 4 regardless of how many bands nificance of this proposed method relies on the accuracy of several
and pixel locations are chosen for processing making the compu-assumptions, mainly with regard to the clutter statistics that are be-
tation of the inverse relatively insignificant. For an arbitrary order jng modeled in the hyperspectral imagery. In this section, we use
GMRF the dimensions of/”' G will be equivalent to the number  real hyperspectral data obtained from Purdue University to evalu-
of unknown Markov parameters which, in general, will be small.  ate these underlying assumptions about the statistical nature of the

background clutter.

6. DATA RESULTS

5. THE DETECTION ALGORITHM

6.1. Spatial-Spectral Correlation
5.1. The GLRT Detector _ )
In section 3, we present a fully spatially-spectrally correlated GMRF

Assuming that the LS estimates are “good”, meaning that the con- model. In prior workg.g.[7], it is assumed that the data is spatially
straints in section (4.2) are closely met,the GLRT defined in equa- jngependent leading to simplifications in both the theory and com-
tion (4) reduces to plexity of the proposed methods. We assert that this assumption is
L arough approximation, and , in general, does not accurately repre-
AX) = o0 | sent the hyperspectral data. To validate our assertion, we begin by
M, |

| M,

©) empirically analyzing sample spatial-spectral correlation matrices
from real data.
M7} is the spatial-spectral covariance matrix which has had the _Figure 2 §hows spatial-spectral correlation matrices_ that were
(0) . ) ) ) estimated using x 8 blocks by8 bands of data for four different
parameter estimates assuming hypothéhjsvas true substituted et of consecutive bands. Pixels which appear closer to white in-

in, M7} is the covariance matrix with the estimates obtained as- dicate higher correlations. We conclude from these images that the
suming hypothesié#l; is true, and - | is the determinant operator.  spacing of the diagonal lines in the images in figure 2 indicate that

s
=



Bands 11-18 Bands 31-38

Bn By Bs

Bands 11-18 .1569 0226 4020
Bands 31-38 0425 0235 5386
Bands 51-58 0957 0235 A747
Bands 61-68 1011 0226 AT715

100 200 300 400 500 100 200 300 400 500

Bands 51-58 Bands 61-68

Figure 4:Table of Estimated Markov Parameters

R 500 representation of the data is our fully spatially-spectrally corre-

100 200 300 400 500 100 200 300 400 500 lated model. Our 3-D Markov model holds regardless of whether
the data is fully spatially-spectrally correlated or spatially indepen-

Figure 2: Spatial-Spectral Correlation Matrices for four sets of 8 dent since in the latter case the estimatesdjpand 3, would be

consecutive spectral bands zero.
7. CONCLUSION
- Bandio We have presented a new 3-D noncausal GMRF model for hy-
Band k perspectral sensor data. We use the model to develop a detec-
Shectral tion algorithm that is capable of efficiently processing the mas-
1 -t~ sive amounts of hyperspectral data that are recorded by the sen-
L sors. A main assumption of the model is that the data is both
< spatially and spectrally correlated. By using our GMRF model,

we obtain a highly structured and well-defined expression for the

; Pixel Xij (ks1) inverse spatial-spectral covariance matrix which contains dnly

Pixel x;j unknown parameters. Using this expression, we avoid doing any
matrix inverse operations, thus, significantly reducing the compu-
tational complexity of the overall algorithm. Also, by estimating

K the parameters for different windows of the data, the algorithm is

able to locally adapt to the background statistics.

Pixel Xij -1y

Figure 3: Correlated Neighbors for 1st-order GMRF model. Blac
squares indicate high correlation while light dotted squares indi-

cate weak correlation.
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