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ABSTRACT

One aim of using hyperspectral imaging sensors is in discriminat-
ing man-made objects from dominant clutter environments. Sen-
sors like Aviris or Hydice simultaneously collect hundreds of con-
tiguous and narrowly spaced spectral band images for the same
scene. The challenge lies in processing the corresponding large
volume of data that is collected by the sensors. Usual implementa-
tions of the Maximum-Likelihood (ML) detector are precluded be-
cause they require the inversion of large data covariance matrices.
We apply a Gauss-Markov random field (GMRF) model to derive a
computationally efficient ML-detector implementation that avoids
inversion of the covariance matrix. The paper details the structure
of the GMRF model, presents an estimation algorithm to fit the
GMRF to the hyperspectral sensor data, and finally, develops the
structure of the ML-detector.

1. INTRODUCTION

This paper addresses the problem of detection of man-made ob-
jects using image data obtained from hyperspectral sensors. Sen-
sors like Aviris and Hydice simultaneously collect hundreds of
contiguous and narrowly spaced spectral bands. The spectral bands
typically extend from the visible to the near-infrared portion of
the electromagnetic spectrum. The advantage of having such high
spectral resolution is that a dense spectral signature is obtained for
each pixel in the image set. This spectral signature varies depend-
ing on what is present in the pixel, thus providing a means for
discriminating between objects of varying composition.

The challenge of using hyperspectral data is in developing al-
gorithms that can efficiently process the massive amounts of data
that are collected by the sensors. For instance, with data from
the Naval Research Laboratory's Hydice sensor, 210 images, each
300 � 300 pixels in size, are collected. Typically each pixel is
represented by 12 bits resulting in over 200 Mbytes of data for
just one scene. Data sets of such magnitude make processing and
storage difficult, and real-time transmission practically impossible.
Therefore, much of the work with hyperspectral imagery focuses
on either compression of the data for purposes of storage and trans-
mission or on developing accurate and efficient models of the hy-
perspectral data in order to decrease the computational complexity
of the algorithms used for processing.

This paper develops an efficient model for the hyperspectral
data that uses Gauss-Markov random fields (GMRF). We use this
model to design the Maximum-Likelihood (ML) detector. Our ap-
proach to ML-detection avoids the inversion of the large covari-
ance matrix which is a major obstacle to applying other detection
approaches [2, 7] to hyperspectral data. To capture the spatial and

unique spectral information provided by hyperspectral sensors, we
model the data, after removal of the spatially varying mean, as a
3-D, noncausal Gauss-Markov Random Field (GMRF).

We begin in section 2 by summarizing the relevant prior work
that has been done. In section 3 we detail our GMRF model for
hyperspectral data. In section 4 we mathematically formulate the
detection problem and detail the estimation method by which the
detector is able to locally adapt to the varying background statis-
tics of the data. Section 5 outlines the overall detection algorithm
and section 6 presents our preliminary research results regarding
the statistical nature of the clutter background of hyperspectral im-
ages.

2. PRIOR WORK

There is limited work published concerning the processing of hy-
perspectral images. The work available in the literature mostly
focuses on compression. The detection work has generally been
intended for geological classification of ground surfaces and not
for the detection of man-made objects.

Extensions of the detectors developed for other sensors,e.g.
the detectors in [2, 7] for multispectral images, are computation-
ally hampered by the required inversion of the data covariance
matrix. For hyperspectral images, this covariance matrix is ex-
ceedingly large. Also, these previous works usually make addi-
tional assumptions, like spatially uncorrelated clutter or negligible
spatial-spectral cross-correlations, which make them sub-optimal.

We show in the following sections how our GMRF model not
only captures the fully spatially and spectrally correlated nature of
the hyperspectral data, but imposes structure on the second order
statistics of the clutter leading to significant reductions in the com-
putational complexity of our detector. Specifically, the use of the
GMRF model provides us with a known structure for the inverse of
the clutter's spatial-spectral covariance matrix. By dealing directly
with the inverse, no matrix inversion is necessary.

3. GMRF MODEL

Unlike prior work, see [2, 7], we use a 3-D GMRF model to de-
scribe pixel radiance. The 3-D model assumes both spatial and
spectral correlation among the image pixels. Each pixel location
in the hyperspectral image set is referenced by the variablex and
three sub-indicesi,j , andk, which indicate the spatial location and
the particular spectral band in which the pixel lies, see figure 1.
Due to the varying nature of the statistics of the data, processing is
done on windows of the image set of sizeNi xNj = N pixel loca-
tions. For purposes of simplifying the presentation of our proposed
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Figure 1: 3-Dimensional Indexing of the Hyperspectral Image
Cube

method, we proceed by using a first-order GMRF model. Under
the GMRF assumption, each pixel radiance is related to neighbor-
ing pixel intensities by:

xijk = �h(xi(j�1)k + xi(j+1)k) + �v(x(i�1)jk + x(i+1)jk)

+ �s(xij(k�1) + xij(k+1)) + �ijk (1)

where�h, �v, and�s are the Minimum Mean Square Error (MMSE)
predictor coefficients for the horizontal, vertical, and spectral di-
mensions, respectively, and�ijk is the prediction error [6].

We form a data vectorX by lexicographically ordering the
sameN pixel block of data inNk consecutive spectral bands. This
provides us withNk vectors,v(k) k = 1; : : : ; Nk, each of length
N . By stacking theNk vectors, we create the data vector

X =
�
v(1)T � � � v(Nk)

T
�T

which is sizeNkN � 1. An error vector,�, is formed in the same
manner by beginning with the matrix of prediction errors,�ijk.
The error vector is a sample from a zero-mean Gaussian colored
noise process which has covariance�2A [1, 6]. The resulting data
and prediction error vectors are related byAX = � where
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Using the Kronecker Product as defined in [3], we can compactly
represent this matrix byA = INk


 A1 + H1
Nk


 A2 where

symbolizes the Kronecker Product and the matricesA1,A2,B,C,
andD are
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are Toeplitz matrices which have zeros everywhere except
for the first upper and lower diagonals which are composed of all
1's. The resulting matrixA, referred to as the potential matrix, is
a sparse matrix and contains all the relevant information regarding
the GMRF structure [1].

A main advantage of this model is that we can now define a
Kronecker representation for the inverse of the clutter covariance

matrix,M�1. GMRF theory tells us thatM�1 is equal to 1
�2
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M�1 is a structured matrix which has unknown parameters�2,
�h, �v, and�s. Estimating these parameters over different win-
dows of the data allows us to locally adapt to the background clut-
ter statistics.

4. PARAMETER ESTIMATION

4.1. Problem Formulation

Using the GMRF model outlined in the previous section, we now
develop a scheme for detection which reveals the advantages of
using our model over the models developed in previous work. The
goal of the detection stage is to find those pixels which represent
possible target locations. We formulate this as a binary hypothesis
testing problem where at each pixel the risk is to decide if only
clutter is present or clutter plus signal. Formally, the hypothesis
testing problem is given by

H0 : X = w
H1 : X = w + r

wherew is the clutter which is a zero-mean GMRF process with
unknown second order statistics andr is the target signal which is
considered to be deterministic and known. The pdfs for the data
vector under the two hypotheses are:
H0 : p(xj�;H0)(X j �;H0) =

1p
2�NNk jMj

exp(� 1
2
tr(M�1 bM0))

H1 : p(xj�;H1)(X j �;H1) =
1p

2�NNk jMj
exp(� 1

2
tr(M�1 bM1))

where bM0 = XXT and bM1 = (X � r)(X � r)T are the sample
covariance matrices and� is the vector of the unknown Markov pa-
rameters. Examining the pdf's, it is clear that we need an estimate
ofM�1 in order to proceed with the processing. Unlike traditional
approaches in which an estimate ofM is made and then inverted,
we directly estimate the inverse by using equation (3) which re-
sults from GMRF theory. The estimate ofM�1 obtained by using
equation (3), is completely determined by estimating the4 scalar
Markov parameters:�h, �v , �s, and�2. This is a significant sim-
plification over previous work.

4.2. Optimal Estimation

The optimal detector for a hypothesis testing problem with un-
known parameters is the GLRT defined in equation (4).

�(X) =
p(X j (H1; b�ML(1)))

p(X j (H0; b�ML(0)))

H1

>
<

H0

� (4)

The parametersb�ML(1) andb�ML(0) are vectors of the Maximum
Likelihood (ML) estimates of the unknown Markov parameters.
The threshold,�, is determined by the Neyman-Pearson Criterion.

The structured and constrained nature ofM�1 makes the ML
estimates computationally expensive to calculate due to a need to
perform a nonlinear optimization. Thus, we present a computa-
tionally less expensive LS parameter estimation approach which
is intended to approximate the ML estimates. The LS Estimation



algorithm is based on using the constraints:M�1 bM0 = I and
M�1 bM1 = I where bM0 and bM1 are the sample covariance ma-
trices defined in section 4.1.

4.3. The Least Squares Algorithm

In the first-order case, only four unknown Markov parameters need
to be estimated. However, the constraints defined in section (4.2)
provide(NiNjNk)

2 equations for those four unknowns. This is an
overconstrained system, so the unknown parameters are estimated
such that the constraints are met in a LS sense. For the sake of
brevity, the following estimation procedure will be developed only
under hypothesisH0. The derivation underH1 is similar and does
not warrant a discussion of its own.

Using the Kronecker expression of equation (3) forM�1 and
rearranging terms we obtain the following equation in terms of the
unknown Markov parameters

�h

��
INk


INi

H1

Nj

� bM0

�
+�v

��
INk


H1

Ni

INj

� bM0

�
+

�s

��
H1

Nk

INi


INj

� bM0

�
+�2

�
INk


INi

INj

�
=bM0 (5)

By first lexicographically ordering the matrices in equation (5),
we can write the equation in matrix notation asG� = � where� is
a vector of the unknown parameters that need to be estimated. The
matrix G, and vector,�, are:

G = [G1 G2]
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�
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The estimates for the Markov parameters are obtained from the

pseudo-inverse or LS solution which is�̂LS =
�
GTG

��1
GT �.

The most computationally demanding operation in the equa-
tion is the inverse ofGTG. However, for a first order GMRF,
this matrix is of dimension4 � 4 regardless of how many bands
and pixel locations are chosen for processing making the compu-
tation of the inverse relatively insignificant. For an arbitrary order
GMRF the dimensions ofGTG will be equivalent to the number
of unknown Markov parameters which, in general, will be small.

5. THE DETECTION ALGORITHM

5.1. The GLRT Detector

Assuming that the LS estimates are “good”, meaning that the con-
straints in section (4.2) are closely met,the GLRT defined in equa-
tion (4) reduces to

�(X) =
j M̂�1

(1)
j

j M̂�1
(0)

j

H1

>
<

H0

� (6)

bM�1
(0)

is the spatial-spectral covariance matrix which has had the
parameter estimates assuming hypothesisH0 was true substituted
in, bM�1

(1)
is the covariance matrix with the estimates obtained as-

suming hypothesisH1 is true, andj � j is the determinant operator.

5.2. Determinant Expressions

To make the detection decision it is necessary to find expressions
for the determinant of the spatial-spectral covariance matrix under
each hypothesis. To do this, we use the property that the deter-
minant of a matrix is equal to the product of all its eigenvalues.
Therefore, we need to find an expression for the eigenvalues of
M�1.

Beginning with equation (3), and assuming thatNi = Nj =
Nk = n, we use properties of linear algebra [5] and the Kronecker
product [3] to determine that the expression for the eigenvalues
is [4]:
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where1 � i � n; 1 � j � n; 1 � k � n; 1 � l � n3

The eigenvalues of the matrixH1
n as defined in [1] are
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�
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n

�
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�
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for 1 � k � n. Using this expression

in equation (7), we determine that there are onlyn distinct eigen-
values with each of thesen eigenvalues repeatedn2 times. Then
distinct eigenvalues are then eigenvalues of the matrixH1

n. The
overall expression for the determinant under assumptionH0 is:
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If we replace the parameter estimates in Equation (8) with the
estimates obtained assuming hypothesisH1 is true, we obtain the
determinant ofM̂�1

(1)
. Computationally, equation (8) requires the

multiplication of onlyk scalar values.

6. DATA RESULTS

The previous sections have explained the theoretical foundation
of our proposed GMRF Detection method. The success and sig-
nificance of this proposed method relies on the accuracy of several
assumptions, mainly with regard to the clutter statistics that are be-
ing modeled in the hyperspectral imagery. In this section, we use
real hyperspectral data obtained from Purdue University to evalu-
ate these underlying assumptions about the statistical nature of the
background clutter.

6.1. Spatial-Spectral Correlation

In section 3, we present a fully spatially-spectrally correlated GMRF
model. In prior work,e.g.[7], it is assumed that the data is spatially
independent leading to simplifications in both the theory and com-
plexity of the proposed methods. We assert that this assumption is
a rough approximation, and , in general, does not accurately repre-
sent the hyperspectral data. To validate our assertion, we begin by
empirically analyzing sample spatial-spectral correlation matrices
from real data.

Figure 2 shows spatial-spectral correlation matrices that were
estimated using8 x 8 blocks by8 bands of data for four different
sets of consecutive bands. Pixels which appear closer to white in-
dicate higher correlations. We conclude from these images that the
spacing of the diagonal lines in the images in figure 2 indicate that
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Figure 2: Spatial-Spectral Correlation Matrices for four sets of 8
consecutive spectral bands
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Figure 3: Correlated Neighbors for 1st-order GMRF model. Black
squares indicate high correlation while light dotted squares indi-
cate weak correlation.

a pixel is more highly correlated with pixels that are in the corre-
sponding location in other spectral bands than with pixels in the
same spectral band that are in neighboring locations, see figure 3.
However, this does not indicate that a pixel is spatially uncorre-
lated. Before drawing any conclusions about spatial independence,
we first evaluate estimates of the 3-D Markov parameters.

6.2. Markov Parameter Estimates

If we apply the first-order GMRF LS parameter estimation tech-
nique developed in section 4.3, which makes no assumption about
spatial independence, to the subsets of data used in figure 2, we ob-
tain estimates for�h, �v, and�s. The resulting estimates are listed
in the table in Figure 4. In each case, the�s estimates are larger
than the estimates for�h and�v . However, the spatial estimates
are significantly large that they should not be neglected. These pa-
rameter estimates support the empirical results in that they indicate
high degrees of spectral correlation, but, in addition, they suggest
non-negligible amounts of spatial correlation. Therefore, the spa-
tially white assumption made in prior work is only a rough approx-
imation to the true nature of the data. A more general and accurate

βh βv βs

Bands 11-18 .1569 .0226 .4020

Bands 31-38 .0425 .0235 .5386

Bands 51-58 .0957 .0235 .4747

Bands 61-68 .1011 .0226 .4715

Figure 4:Table of Estimated Markov Parameters

representation of the data is our fully spatially-spectrally corre-
lated model. Our 3-D Markov model holds regardless of whether
the data is fully spatially-spectrally correlated or spatially indepen-
dent since in the latter case the estimates for�h and�v would be
zero.

7. CONCLUSION

We have presented a new 3-D noncausal GMRF model for hy-
perspectral sensor data. We use the model to develop a detec-
tion algorithm that is capable of efficiently processing the mas-
sive amounts of hyperspectral data that are recorded by the sen-
sors. A main assumption of the model is that the data is both
spatially and spectrally correlated. By using our GMRF model,
we obtain a highly structured and well-defined expression for the
inverse spatial-spectral covariance matrix which contains only4

unknown parameters. Using this expression, we avoid doing any
matrix inverse operations, thus, significantly reducing the compu-
tational complexity of the overall algorithm. Also, by estimating
the parameters for different windows of the data, the algorithm is
able to locally adapt to the background statistics.
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