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We propose a global method to match pair of images using the
similarity information. Using a generic similarity distance
between pixel pairs, this method can match any kind of images
(gray levels, RGB, IR) or more generally any pair of 2D matrix
(like spectrogram or wavelet transformations). Our algorithms
search the best matching map in a 4-dimensional space defined
by the Cartesian product of two input images. Several
parameters like topological cost functions or global minimum
search method can be adapted, function of specific applications.
One of the proposed search method is an original extension of
dynamic programming in 4D space. Other methods like iterated
global searching or simulated annealing are proposed and their
performances are compared. Typical applications are 3D stereo
reconstruction, optical flow and velocity field computing or
(sub-)pixel texture stretching measurement.
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Many image processing chains use, as basic algorithm, the image
pair matching. Computing stereoscopic disparity between
objects or velocity field in video streams are usual tasks in our
image processing environment [1][5]. Due to the high amount of
computation at pixel level, a lot of algorithms uses high level
primitives extraction and 3D scene modeling. Unfortunately, this
high level approach can’t give a high resolution matching map
nor a good FRPSXWLQJ� VSHHG� WR� PDWFKLQJ� SUHFLVLRQ ratio for
many complex and realistic scenes. A stereoscopic view of a
forest, for example, can be modeled very approximately, while
pixel to pixel matching gives better results in 3D reconstruction.

Our method uses two input images (or anything else that could
be represented as 2D matrix) and gives as result a 4D matching
map showing the best matching between the two input images
with respect of SDUDPHWULF�FRQVWUDLQWV imposed by user. In other
words, similar patterns or regions (even translated or stretched)
in input images will be matched by the resulted map [2]. For
example, the matching map gives the disparity information for a
stereoscopic pair of images, velocity field for a video sequence
[4][6] or stretching effort in microscopic image processing [3].
3DUDPHWULF� FRQVWUDLQWV mean stretch cost function, similarity
cost function between pixel elements, topological restrictions or
high level matching constraints.

We consider the image matching as an essential step of low level
processing, giving rich and useful information to the image
segmentation and other high level processing steps. If user needs
an interaction between a high level matching process and the 4D

matching algorithm, he can impose to the last a list of 4D "fixed
points" where the 4D map must be attached. This kind of
constrains may come from the scene model, 3D reconstruction
process or other D� SULRUL information. Our algorithm gives
excellent results without any high level information but in some
cases, like video streams processing [6], this can reduce the
computing time and can give a more robust solution.
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�����,QSXW�DQG�ZRUNLQJ�VSDFHV

The matching map between the two input images is defined as an
irregular grid immersed in a 4D space. This LQSXW� VSDFH is the
Cartesian product between each 2D space of input images. Each
node of the matching map has 4 coordinates (x1, y1, x2, y2),
associating two points P1(x1, y1) and P2(x2, y2) from I1 and I2

images. The VXESL[HO�PDWFKLQJ� DSSURDFK uses the continuous
interpolation of I1 and I2 . In this case, all coordinates of P1 and
P2 are real numbers between 0 and each image size: x1MAX,
y1MAX, x2MAX, y2MAX. The SL[HO� DSSURDFK considers only the
integer values for coordinates and the original input I1 and I2.
Further analysis will adopt this approach, approximating the
subpixel matching by oversampled input images matching. This
leads to a multiresolution approach exposed in Section 3.

We call a projection from 4D space to the 2D space of first
image an ,��SURMHFWLRQ and to the second image an ,��SURMHFWLRQ.
To simplify further descriptions we shall use some times the ,��
SURMHFWLRQ point of view. This will break the symmetry of our
approach but one can reiterate it using an ,��SURMHFWLRQ. In the
pixel approach, the matching map� ,��SURMHFWLRQ is an eventual
incomplete version of I1 pixel grid.
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)LJXUH��. Topological projection of matching map

The number of potential nodes in 4D input space 6, is very large:
x1MAX⋅y1MAX⋅x2MAX⋅y2MAX . For example, two 256x256 images
will generate 232 = 4 Giga nodes. Even with recent powerful
computers, the exploration of such input space is inconceivable.
Fortunately, working space to explore will be smaller. Let’s



consider two identical input images: the matching map will have
the same number of nodes as pixels in each image. We call it
identity map 0,. Each node is placed on a symmetrical position
(x1,y1,x1,y1). Now, the matching map for two stereo images will
be "quite close" to the identity map. "Quite close" means we
hope finding the optimal solution in a neighborhood of the
identity map called the ZRUNLQJ� VSDFH 6: . The actual size of
working space is given by Xr and Yr, the ,��SURMHFWLRQ radii of
4D neighborhood around each identity map node N.

6: = { P(x1,y1,x2,y2) | (∃)N(x1,y1,xn2,yn2) ∈ 0,,
xn2-Xr ≤ x2 ≤ xn2+Xr and yn2-Yr ≤ y2 ≤ yn2+Yr }

This sophisticated 6: definition accepts input images with
different sizes by replacing the identity map with an initial
stretched map. This allows us to implement a multiresolution
approach detailed in Section 3. 6: has only
x1MAX⋅y1MAX⋅(2Xr+1)(2Yr+1) nodes to explore. For example,
two 256x256 stereo images with maximum parallax at 10% on X
axis and 1% of misalignment on Y axis generate 5.7⋅106 nodes,
1000 times lower than input space size.

The scene complexity is one of the parameters we must know to
predict the topological nature of matching map. Several scene
complexity levels are to be considered. Figure � shows 3
complexity levels. It uses 2D scenes, 1D images and 2D
matching map for the seek of simplicity but the same
classification works for 3D scenes, 2D images and 4D maps.
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)LJXUH��. Matching map complexity levels
(a) "stretched" (b) "low parallax" (c) "high parallax"

(a) "stretched" images: ignoring border limitation, each pixel on
I1 image has a correspondent pixel on I2 image. The matching
map is JOREDO�PRQRWRQH and continuous.
(b) "low parallax" stereo images: there are some pixels on each
image without correspondent on the other image. The matching
map is still JOREDO�PRQRWRQH but not continuous.
(c) "high parallax" stereo images: there are some unmatched
pixels on each image and the matching map is not monotone nor
continuous. Fortunately, it is composed by a finite number of
ORFDO�PRQRWRQH regions.

Global and local monotony definitions (each one verifies the
same relations on Y axis):
*OREDO�PRQRWRQH�PDS�00: for any nodes A, B, C ∈ 00 ,

x1(A) < x1(B) < x1(C) if and only if
x2(A) < x2(B) < x2(C) (1)

/RFDO�PRQRWRQH�PDS�UHJLRQ�50: (∃) F1 and F2 ∈ 50 ⊂ 00,
such as, for any nodes A, B, C ∈ 00�,

x1(F1) < x1(A) < x1(B) < x1(C) < x1(F2) if and only if
x2(F1) < x2(A) < x2(B) < x2(C) < x2(F2) (2)

Figure 3 shows a typical 4D matching map ,��SURMHFWHG. The
optimal one has the lower global cost all over nodes and links.
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)LJXUH��. Typical 4D matching map. Each node

(little square) has 4 coordinates (x1, y1, x2, y2). Out-of-border 4D
nodes are grayed. Each double arrow links two valid nodes

����'HILQLQJ�FRVW�IXQFWLRQV

The WRSRORJLFDO� VWUHWFKLQJ� FRVW� IXQFWLRQ )/ is defined as a
penalization due to local topological distortion of a link between
two 4D nodes A(xa1,ya1,xa2,ya2) and B(xb1,yb1,xb2,yb2):

)/(A, B) = )/( d(A, B) )
where d is the local stretch of the link, defined as:

d(A, B) = | xa2 - xa1 - xb2 + xb1 | + | ya2 - ya1 - yb2 + yb1 |

As A and B are horizontal (xa1=xb1-1) or vertical (ya1=yb1-1)
neighbors on ,��SURMHFWLRQ, the last formula can by simplified:

dV(A,B) = | xa2 - xb2 | + | 1 + ya2 - yb2 | or
dH(A,B) = | 1 + xa2 - xb2 | + | ya2 - yb2 |

Specific applications impose an anisotropic cost function:
different profiles are applied on vertical and horizontal stretch.

)/(A, B) = )+/( dx(A, B) ) + )9/( dy(A, B) ) = (3)
)+/( | xa2 - xa1 - xb2 + xb1 | ) + )9/( | ya2 - ya1 - yb2 + yb1 | )

Figure � shows some stretching cost functions we used to match
various types of images.
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)LJXUH��. Typical topological stretching cost functions
(a) linear (b) cubic and (c) plateau profiles



The main interest of stretching cost is to favor local monotony
over homogeneous regions of matching map. It penalizes the
breaking up of the map, so images of different complexity levels
need different stretching cost profiles.

The SL[HO�WR�SL[HO�VLPLODULW\�FRVW�IXQFWLRQ expresses a distance
between corresponding pixels on two input images. It means a
difference of intensity levels for gray-levels images (4), a color
distance in RGB space for RGB images (5) or even an user
supplied function for specific 2D matrix matching:

)1(x1,y1,x2,y2) = | I1(x1, y1) - I2(x2, y2) | (4)

)1(x1,y1,x2,y2) = C x ,y C x ,y1 1 2 2
C R,G,B

1 2( ) ( )−
=
∑ (5)

The JOREDO�FRVW &* to minimize is defined as a sum between the
stretching cost of all matching map links, vertical and horizontal
(&9/ and &+/), and the similarity cost &1 of all 4D nodes
belonging to the map:
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where the Px,y’s�,��SURMHFWLRQ is equal to (x, y).
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We propose three different ways to find an optimal or near-
optimal solution for global cost minimization: dynamic
programming, iterated minimum search or simulated annealing.

������'�G\QDPLF�SURJUDPPLQJ

For each node in working space algorithm computes 4 records:
NX and NY, the best X and Y-neighbors, &/ and &*. &/ signifies
the local cost on x1 column of I1 image, from the beginning to
the current position, while &* means the global cost of matching
map between the 4D origin and the current position. This
original 4D algorithm optimizes memory needs. While scanning
6: on x1 column of I1 the only data we need to know from the
past is the global cost of nodes on x1-1 column: only
y1MAX(2Xr+1)(2Yr+1) nodes. The only information to save for
backtracking step is the best neighbors addresses of each node.

�� )RUZDUG�VHDUFKLQJ
)RU�HDFK P(x1,y1,x2,y2) ∈ 6: (the most inner loop variable is y2)
• Search the best X-neighbor of P:

NX(P)=arg min
N

{&*(N)+)/(N,P) | N(x1-1,y1,xm2,ym2) ∈6:}

• Search the best Y-neighbor of P:
NY(P)=arg min

N
{&*(N)+)/(N,P) | N(x1,y1-1,xn2,yn2) ∈ 6:}

• &/(P) = &/(NY(P)) + )/(P,NY(P)) + )1(P)
• &*(P) = &/(NX(P)) + )/(P,NX(P)) + &/(P)
�� %DFNWUDFNLQJ
Search in 6: the NMIN node with minimal &* under user

constraints (like x1=x1MAX and y1=y1MAX or something else).
Backtrack the binary tree with root: NMIN{NX(NMIN), NY(NMIN)}

and build the matching map.
Optimize ,��SURMHFWLRQ: between several 4D nodes with the same

(x1,y1) projection, keep the one with minimal &* cost.

�����,WHUDWHG�PLQLPXP�VHDUFK
This algorithm leads to a near optimal solution 06:
�� 06 = uniform stretched map between I1 and I2 .

Compute &* = global cost of 06 (equation 6).
�� )RU�HDFK P(x1,y1,xp2,yp2) node ∈ 06 :

Find P’s north, west, south and east neighbors: NN,NW,NS,NE

Optimize P’s ,��SURMHFWLRQ (xp2,yp2) :
P=arg min

P
{)/(P,NN)+)/(P,NW)+)/(P,NS)+)/(P,NE)+)1(P)}

�� Compute &*1(: = new global cost of 06 .
�� ,I &*1(: - &* > ∆&0,1 WKHQ &* = &*1(: and JR�WR step ��

HOVH end of algorithm

�����6LPXODWHG�DQQHDOLQJ
Iterated minimum search does not guarantee the optimal solution
when many local minima surround it. Simulated annealing
minimum search is a modified version of last algorithm, where
the P’s ,��SURMHFWLRQ optimization is replaced by a stochastic
optimization. In this way, it avoids local minima. Only this
specific step (number 2) is detailed:

ì Randomly peek a node Q ∈ 06 with same ,��SURMHFWLRQ as P.
ì Compute neighborhood cost for P and Q:

&1(P)= )/(P,NN)+)/(P,NW)+)/(P,NS)+)/(P,NE)+)1(P)
&1(Q)= )/(Q,NN)+)/(Q,NW)+)/(Q,NS)+)/(Q,NE)+)1(Q)

ì Stochastic replacement of P by Q with 3 probability:

3(P→Q) = 
1

1+
−





exp
( ) ( )& 3 & 4

7
1 1

The generic temperature T parameter decreases to zero after each
global iteration over map nodes.

�����0XOWLUHVROXWLRQ�DSSURDFK
Using the best appropriated method between the three already
presented we built a global multiresolution algorithm. It
optimizes the computing speed by working with a downsampled
pair of input images. At each step it doubles the image resolution
and uses the last computed matching map 00 as initial map�06,
while Xr and Yr parameters are kept unchanged. So, at highest
resolution level the working space will be significantly thinner
than one used by the one-step algorithms (figure �).

�� Choose initial downsampling factor: K=K0 .
Compute Xr and Yr , function of X and Y image parallax.
06 = uniform stretched map between I1↓2K0 and I2↓2K0.

�� Downsample input images: Img1=I1↓2K and Img2=I2↓2K

�� Find matching map 00 using Img1, Img2 in working space
defined by 06, Xr and Yr.

�� ,I K=KMIN WKHQ JR�WR the end of algorithm
HOVH K = K-1, oversample 06 = 00 ↑ 2 and JR�WR step ��
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each step
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)LJXUH��� Computing over-head comparison
for two 512x152 images with ±12% parallax on X and Y axes



The subpixel approach providing high resolution matching is a
natural extension of multiresolution mechanism. Taking a
negative KMIN limit (while pixel approach takes KMIN=0), the
algorithm continues to match oversampled images, winning a
2-KMIN precision factor. Unfortunately, acquisition or
quantification noise and Nyquist sampling frequency will limit
subpixel approach, so user has the entire responsibility to stop
matching process at reasonable resolutions. We obtained
significant results for KMIN ≥ -3 (figure �).

Multiresolution approach gives interesting result in matching
wavelet transformed images too. The wavelet transformed
images with lowest resolution belong to the "stretched" class
even if the real images belong to the "high parallax" class. This
approach provides the smoothest way to match disparate images.

����$33/,&$7,216�29(59,(:
Each class of real applications needs specific tuning of algorithm
parameters, like cost functions, minimization algorithm, working
space size, and border conditions.

�'�UHFRQVWUXFWLRQ�XVLQJ�VWHUHR�LPDJHV
A stereo image pair has a very low Y parallax so the 6:’s
vertical radius Yr must be kept as low as possible to minimize
computation time. On the other hand the horizontal size Xr can
be larger, usually at 5-10% of the image width. For "high
parallax" scenes, a "border warning" will be generated by the
algorithm, indicating it needs a new, larger value for Xr.

    
)LJXUH��� Left, right images and X parallax of matching map

For different scene classes, the user can favor or not the breaking
up of matching map along vertical directions. The choice of
stretching cost function will be essential. An anisotropic
function with horizontal plateau profile and vertical cubic profile
gives better results than an isotropic one.

9HORFLW\�ILHOG�IURP�LPDJH�VHTXHQFH�DQG�WDUJHW�WUDFNLQJ
This time, Xr and Yr radii have the same magnitudes because
there’s no D� SULRUL privileged direction for velocity field. The
maximal angular velocity, the focal length and the frame rate
determine the magnitude of Xr and Yr.

)LJXUH��� Two images ($SROOR���) and resulting velocity field

2SWLFDO�PLFURVFRSLF�RU�+5(0�LPDJLQJ�DQG�UHOLHI�PDS�IURP
DHULDO�LPDJHV
This kind of image belongs to the "stretched" class so, small Xr
and Yr radii can be used for working space. Significant
measurements of stretching efforts or relief altitude need
subpixel matching. Figure 8 shows the reached precision on
synthetic images for successive subpixel oversampling rates.
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)LJXUH��� High precision matching using multiresolution:
mean detected parallax 3' function of real parallax 35

����&21&/86,21�$1'�)8785(�:25.
We proposed a new approach for high precision image matching
at low level processing. An original concept of 4D matching map
was introduced and three new algorithms for searching the
optimal map were detailed. Our approach covers a wide range of
basic image applications. Present and future work is concen-
trated on hardware implementation of matching algorithms to
accelerate the processing speed in real time applications.
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