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ABSTRACT

One of the most widely used techniques for obtaining infor-
mation on the health state of three-phase induction machines is
based on the processing of stator current. In fact, in the case of
steady state operations, anomalous current spectral components,
that increase if a fault occurs, allow to diagnose the presence and,
in some case, the type of fault. In this paper, a Bayesian approach
is proposed using a simulation technique, the Markov chain Monte
Carlo (MCMC), to estimate the amplitude of some spectral com-
ponents modified by machine faults and the slip, a parameter re-
lated to the load conditions, with a view to automatically detecting
faults. Results on real stator current waveform are given.

1. INTRODUCTION

The problem treated in this paper is the monitoring of a three-phase
induction machine with a view to automatically detecting faults.

In the literature, several parameters within this motor have
been monitored by researchers as a means of obtaining useful healthy
information : axial vibrations, axially directed flux [2]. But, one
of the most widely used techniques for obtaining information on
the health state of three-phase induction machines is based on the
processing of stator current. In fact, in the case of steady state op-
erations, anomalous current spectral components, that increase if a
fault occurs, allow to diagnose the presence and, in some case, the
type of fault [3]. Stator current monitoring is usually based on the
classical spectral analysis using FFT algorithm.

In this paper, a Bayesian approach using simulation method
is proposed to take into account a priori knowledge about stator
current and to eliminate all the unmodified parameters. Since all
the frequencies present in the stator current depend linearly on the
slip, a parameter related to the load, our objective is to estimate it
and the amplitudes modified by machine fault.

The paper is organized as follows. In section 2, some results
about stator current spectral analysis are introduced and a general
spectral characterization is given allowing to propose a stator cur-
rent model. In section 3, the Bayesian solution to estimate param-
eters under interest using the one-variable-at-a-time random walk
Metropolis-Hastings (M-H) algorithm is described. Finally, the
proposed method is performed on real stator current data.

2. STATOR CURRENT ANALYSIS

First, study conditions of the stator current for the supposedhealthy
three-phase induction machine are given. In order to facilitate suc-
cessful detection of machine faults, the motor have been monitored

whilst running under full load conditions during steady state opera-
tion. Therefore, the slip s is constant. From [1], [5], we can notice
that all the principal frequencies present in the stator current are
defined in function of some known physical machine parameters
like number of pole pairs or number of rotor slots, f0 the known
supply frequency and the slip s assumed to be unknown. That
allows to ensure the stationarity of the treated sequence of stator
current samples.

The principal spectral components of the stator current are
given for the normalized supply frequency f0 = 0:05 and s =
0:04 in fig. (1) and (2) (see [7] for more details). It is made of
the supply frequency harmonics and spectral components depend-
ing on s. Fig. (2) is a zoom around f0 where x = (1�s)f0

2 and
y = 2sf0.
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Figure 1: Principal spectral components of stator current
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Figure 2: Zoom around the supply frequency, f0 = 0:05

Motor fault modifies the spectrum of the healthy motor by
changing amplitude of some spectral components and these char-



acteristic frequencies are coupled to particular faults, they have
been determined for air gap eccentricities, broken bars in the rotor
cage, rolling-element bearing failures and electrical based faults
like stator voltage unbalance [7].

Therefore, with a view to detecting faults, a stator current
model made of M superimposed sinusoids in additive Gaussian
noise is proposed. The sinusoids frequencies are related linearly
to the slip s and p of them correspond with p sinusoids amplitudes
modified by machine faults.

3. BAYESIAN APPROACH

3.1. Data Model

Let d = fd0; � � � ; dN�1g be a sequence of N observed stator cur-
rent samples which is assumed to be made of superimposed sinu-
soids in additive noise, that is :

d(n) =

pX
k=1

ack cos(!kn) + asksin(!kn)

+
MX

k=p+1

ack cos(!kn) + asksin(!kn) + e(n); (1)

where e(n) is a sample of a zero-mean, i.i.d., white, Gaussian
noise with variance �2 unknown. ack = Ak cos(�k), ask =
�Ak sin(�k) where Ak and �k are, respectively, the unknowns
amplitude and phase of the kth sinusoid.
!k is the frequency of the kth sinusoid defined by :

!k = �ks+ �k

, where �k and �k are known, �k being equal to zero for some
frequencies and s is the parameter to estimate.

The amplitudes of the first p sinusoids are to estimate and the
amplitudes of the (M � p+ 1) remaining ones are to eliminate.

Model (1) can be written in the following matrix equation:

d =Ga +Db+ e; (2)

where e is an N � 1 vector of Gaussian noise samples, a is an
2p� 1 vector of sinusoid amplitudes to estimate such as

a
T =

�
ac1 as1 ac2 as2 � � � acp asp

�
:

G is an N � 2p matrix defined by :

G =
�
fc1 fs1 fc2 fs2 � � � fsp

�
;

where

f
T
ck =

�
1 cos(!k) � � � cos(!k(N � 1))

�
;

f
T
sk =

�
0 sin(!k) � � � sin(!k(N � 1))

�
;

b is an 2(M�p+1)�1 vector of sinusoid amplitudes to eliminate
by integration such as :

b
T =

�
ac(p+1) as(p+1) � � � acM asM

�
;

andD is an N � 2(M � p+ 1) matrix defined by:

D =
�
fc(p+1) fs(p+1) � � � fcM fsM

�
:

3.2. Bayesian solution

The objective is to estimate the slip s and sinusoids amplitude vec-
tor a. In the Bayesian framework, two principal steps are neces-
sary:

� First, to determinate the analytic expression of the poste-
rior density of s and a only given the data d and the prior
information I , p(s;ajd; I).

� Second, to evaluate the statistics of interest from the poste-
rior density like posterior mean (MMSE estimator) or pos-
terior maximum (MAP estimator).

3.2.1. Computation of the posterior density

The likelihood of data is given by the joint probability of the noise
samples :

p(dja;b; �; s; I) = (2��2)�
N
2

� exp

�
�

1

2�2
(d�Ga�Db)T (d�Ga�Db)

�
: (3)

From Bayes’ theorem, the joint posterior probability density of all
of the parameters, p(a;b; �; sjd; I), is :

p(a;b; �; sjd; I) =
p(dja;b; �; s; I)p(a;b; �; sjI)

p(djI)
; (4)

where p(a;b; �; sjI) corresponds with prior density of the param-
eters given prior information I and p(djI) is the normalization
constant. As (a;b; s; �) are i.i.d, we can write :

p(a;b; �; sjI) / p(ajI)p(bjI)p(sjI)p(�jI) (5)

The priors we have chosen are as follows :

� Non informative uniform priors for each of the elements of
a and b,
p(aijI) = ki i = 1; � � � ; p where ki are constants.
p(bijI) = li i = 1; � � � ;M � p+1 where li are constants.

� Jeffrey’s prior for � : p(�jI) / 1
�

� Informative Gaussian prior for s:

p(sjI) =
1

�2s
exp(�

1

2�2s
(s� �s)

2) (6)

where �s and �2s are given by the experiment.

The nuisance parameters b and � are eliminated by integration:

p(s;ajd; I) =

Z 1

0

Z 1

�1

p(a;b; �; sjd; I)d�db: (7)

After computation, the posterior density of s and a has the follow-
ing expression:

p(s;ajd; I) /
1

�2s
exp(�

1

2�2s
(s� �s)

2)

�

�
(d�Ga)TQ(d�Ga)

�� (N�2(M�p+1))
2p

det(DTD)
(8)

whereQ = IN�D(DTD)�1DT with IN is the (N�N) identity
matrix.



From (8), the evaluation of the posterior mean or the posterior
maximum are required but the high dimension and the complexity
of the posterior density make its exploitation not possible by exact
analytic approach and difficult by conventional numerical meth-
ods.

The proposed solution is to generate samples from this poste-
rior density by using a MCMC algorithm, straightforward to im-
plement and not requiring the knowledge of the normalization con-
stant

3.2.2. Simulation using Metropolis-Hastings algorithm

A MCMC method is a simulation technique that generate a sample
from a target distribution �(:) by specifying the transition proba-
bility of a Markov process. The Markov chain is then iterated a
large number of times in computer-generated Monte Carlo simu-
lation, see [4].

One of the usefulnessMCMC method is the Metropolis-Hastings
(M-H) algorithm. The transition kernel for the M-H chain is de-
fined by:

PMH(x; dy) = q(x; y)�(x;y)dy

+

�
1 �

Z
R

q(x; y)�(x; y)dy

�
�x(dy); (9)

where �(x; y) is the probability of move from x to y and is given
by:

�(x;y) =

�
min[�(y)q(y;x)

�(x)q(x;y) ; 1] if �(x)q(x; y) > 0

1 otherwise
: (10)

the density q(x; y) is the candidate generating density straightfor-
ward to simulate. In our case, q(x; y) = q1(x� y) where q1(:) is
a multivariate density such as the candidate y is drawn according
to the process y = x+ z, where z is called the increment random
variable and follows q1.

This random walk M-H algorithm is relevant in our problem
since it does not require the precise location of the target density
(eq. (8)).

Moreover, the one-variable-at-a-time version of this algorithm
combining (1 + 2p) updates at each iteration is proposed. In fact,
it is easier to find several conditional kernels that converge to their
respective conditional densities than to find one kernel that con-
verges to the joint one. Convergence of this version is faster than
one of the classical version of the M-H algorithm (see [6] for more
details).

The one-variable-at-a-time random walk M-H method has been
implemented following the algorithm:

find the initial values : �(0) = [s(0);a(0)]
for k = 1:::T do :

for i = 1; ::;2p + 1

generate yk from qi(yk � �
(k)
i )

generate u from U (1,0)

�i(�
(k)
i ; yk) = min

�
1;

p(ykj�
(k)��

(k)
i

;d;I)

p(�
(k)
i
j�(k)��

(k)
i

;d;I)

�

if u � �i(�
(k)
i ; yk) then

�
(k+1)
i = yk

else
�
(k+1)
i = �

(k)
i

endif
end

end

where qi(yk � �
(k)
i ) is the candidate-generating density of the

ith parameter of � and has been chosen as an independent normal
univariate distribution of known variance �2i and zero mean.

After a sufficient number of iterations T , the generated sam-
ples �i are distributed following p(�(k)i jd; I) and posterior means
are computed from them by:

�̂i =
1

T � T0

TX
k=T0

�
(k)
i : (11)

4. RESULTS

In order to test the proposed method, laboratory experiments were
performed with a 4 kW induction motor (a) for the supposedhealthy
machine and (b) for the machine where stator voltages are unbal-
anced by adding a 0.2 p.u. resistance to one phase, stator current
data are plotted in fig. (3).
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Figure 3: stator current data for the healthy and the damaged ma-
chine

The normalized supply frequency is f0 = 0:05 and the slip
provided by the experimenter is s = 0:037. The principal spectral
component modified by this fault is the third harmonic of the sup-
ply frequency whose amplitude increases in significant way (see
[7] for more details).

Sequences of N=100 stator current samples are assumed to be
compounded of M = 13 principal spectral components. Ampli-
tude of the third harmonic of f0 has been monitored (p = 1). The
prior parameters of (6) have been fixed at �s = 0:037, �s = 0:004

and the standard deviation of qi(yk � �
(k)
i ) i = 1; 2; 3 are �1 =

0:007, �2 = 0:002, �3 = 0:002.
In the sampling process, the first 1000 draws have been ig-

nored and we collect the next 4000 (T=5000) ones to evaluate the
posterior mean. The posteriors mean and variance of the gener-
ated samples for A1 and s in each case (a) and (b) are given in the
following array:

(a) (b)
mean variance mean variance

A1 1.16e-2 9.86e-7 6.84e-2 1.17e-6
s 0.0329 1.58e-5 0.0335 1.60e-5



Figures (4) and (5) show respectively the estimation of p(A1js;d; I)
and p(sjac1; as1;d; I) in the healthy case whereas figures (6) and
(7) show the estimation of p(A1js;d; I) and p(sjac1; as1;d; I) in
the damaged case.
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Figure 4: Estimation of p(A1js;d; I) for the healthy machine
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Figure 5: Estimation of p(sjac1; as1;d; I) for the healthy machine
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Figure 6: Estimation of p(A1js;d; I) for the damaged machine

The results obtained in each case for estimating the stator cur-
rent parameters under study have been satisfactory. In fact, the
stator current model choice is justified by two remarks : First, the
slip estimation gives similar results in the healthy and damaged
cases and, second, the estimated third harmonic amplitude A1 has
been increased in significant way in presence of the stator voltage
unbalance.
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Figure 7: Estimation of p(sjac1; as1;d; I) for the damaged ma-
chine

5. CONCLUSION

The problem we have addressed is the fault detection of three-
phase induction machine. A Bayesian approach associated with
a MCMC algorithm has been proposed to analyse the stator cur-
rent represented by noisy superimposed sinusoids. This algorithm
allows to take into account a priori information on the data, given
by the experiment, and to analyze only the components modified
by the fault. It has been successfully applied on real stator current
data, giving a first step to fault diagnosis.
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