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ABSTRACT

In our paper, the problem of very low bit rate segmental speech
coding is addressed. The basic units are found automatically in the
training database using temporal decomposition, vector quantiza-
tion and multigrams. They are modelled by HMMs. The coding
is based on recognition and synthesis. In single speaker tests, we
obtained intelligible and naturally sounding speech at mean rate of
211.2 b/s. In the end, future extensions of our scheme (diphone-
like synthesis and speaker adaptation) as well as possible use of
automatically derived units in recognition are discussed.

1. INTRODUCTION

Among low bit rate speech coders [11], the very low rate region is
populated mostly bysegmentalor phoneticvocoders. Only those
schemes, based on recognition and synthesis, are able to use effi-
ciently the limited number of bits and overcome the problems of
standard frame-by-frame coding. One of main problems of seg-
mental methods is the choice of basic units. Typically,phonemes
are used [12, 7], which induces the need of a phonetically tran-
scribed training database.

In our approach, those units are foundautomatically, so that
only sufficient amount of raw training data is necessary. There-
fore, this scheme is easily applicable in languages lacking standard
speech databases and forms an important part of ALISP (Auto-
matic Language Independent Speech Processing) tools [10]. With
such a set of units, we have built a coder, consisting of recognizer
(acoustically labelling the speech) and additional information en-
coder. In the decoder, a synthesis takes place, in our case concate-
nating examples from the training corpus, to obtain output speech.

The paper is organized as follows: section 2 presents a global
view of our coder. Section 3 describes the search of basic units.
Section 4 gives details on modelling and segmentation and section
5 discusses the additional information transmission and synthesis.
Each of sections 3,4 and 5 is completed by description of exper-
imental setup and partial results. The following section 6 com-
ments the final results in terms of quality and bit rate. In section 7
we discuss future extensions of our scheme and possible applica-
tion of this concept to speech recognition, and section 8 contains
the conclusion.
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Figure 1: Scheme of the segmental coder.

2. SEGMENTAL CODING

The coding scheme is given on Fig. 1. The algorithm can be di-
vided into five parts:

1. Non-supervised search of characteristic segments.On
contrary to other phonetic vocoders [12, 7], the set of basic
units is defined automatically. The temporal decomposition
(TD), vector quantization (VQ) and multigram segmenta-
tion (MG) were used to find the initial set. It was further
refined by hidden Markov model (HMM) training, and re-
labelling.

2. Clustering and modelling of segments.Standard left-right
HMMs were used to model the sequences.

3. Segment recognition.The segmentation and segment reco-
gnition can be done using techniques known from continu-
ous speech recognition. The index of recognized sequence
is transmitted from the coder to the decoder. A simple “un-
igram” language model (LM) weighting the emission prob-
abilities of HMMs was tested.

4. Segment reconstruction. To obtain synthetic speech on
the decoder side, additional information must be transmit-
ted. In this etap, a simple synthesis using examples from
the training corpus was applied. Only the choice of exam-
ple and energy correction is transmitted.

5. Adaptation. The resulting set of typical segments is strong-
ly dependent on the training database. Several approaches
can be considered to overcome the inter-speaker variability



(normalization of voices to a generic one, voice modifica-
tion). The adaptation module has not yet been created and
tested experimentally.

3. SEARCH OF TYPICAL SEGMENTS

First, the speech signal is divided into active and passive parts us-
ing a voice activity detector (VAD); only active parts are taken
into account. Each part is parametrized on frame basis by a set
of spectral coefficients, forming aP � n matrix Y , whereP is
the size of parameter vector andn the number of frames. This
matrix is separated into limited amount of spectralevents, each
consisting of atargetand aninterpolation function (IF)using TD
[1, 3] – the spectral parameters are approximated by a product of
two matrices:Y = G�, whereG is aP �M target matrix and
� is aM � n matrix of interpolation functions, concentrated in
time. The numberM of events isM < N . The method used for
this decomposition is a short-time SVD with adaptive windowing,
post-processing of interpolation functions (smoothing, decorrela-
tion) and iterative refinement ofG and� [3].

Then, the parameter vectors situated in gravity centers of IFs
are quantized using simple VQ with low-size codebook in order
to obtain a string of symbols. This string is used to determine a
set of characteristic variable length symbol patterns calledmulti-
grams. The MG segmentation and dictionary training are based on
decision oriented likelihood maximization:

L(W ) = max
fBg

Y

k

p(Sk) (1)

wherep(Sk) are the probabilities of symbol sequences andfBg is
the set of all possible segmentations. The process consists of ini-
tialization of dictionary using all occurences of1� tom�symbol
sequences, and of iterations of segmentation (Eq. 1) and probabil-
ities reestimation. Although a MG-based method, where the sym-
bols are replaced by unquantized vectors, has already been defined
[2], the original method [4] was used, with two modifications:

� forced segmentationon the borders of active parts. Those
are determined by VAD, and the resulting training string
is created by their concatenation, so no multigram should
cross their borders.

� minimum occurence numberfor multigram dictionary en-
tries. This modification was done with respect to the fol-
lowing HMM training, where a minimum number of exam-
ples is needed.

The outputs of this procedure are a set of variable length char-
acteristic sequences of quantized spectral events with associated
probabilities, and a phonetic-like labelling of the training corpus.

3.1. Experimental setup, results

A single speaker data from the Swiss French telephone DBPolyvar
recorded at IDIAP [8] were used. The set of 218 calls was divided
into training (4

5
) and test (1

5
) sets; only the training one was used

for the search. The signal was parametrized using 10 LPCC coef-
ficients in frames of 20 ms, with 10 ms overlapping. The LPCC
mean was substracted for each call. In the same time, the pitch
(using FFT-cepstrum on 400 ms frames) and log-energy were com-
puted. The voice activity was detected using one absolute and one
relative energy thresholds, and the raw decisions were smoothed
using a 11-tap OR-filter (“all around must be silence to consider
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Figure 2: Example for the French word “cinema”. a) signal, b)
spectrogram, c) TD interpolation functions, d) MG segmentation,
e) HTK-like transcription.

a frame silent”). As result, 5.2 hours of active speech containing
15813 active parts and1:8 � 106 frames were obtained. The TD
was done using thetd95 package (see Acknowledgements). The
parameter controlling the number of spectral targets was empir-
ically set to have approximately the same number of events per
second as the phonetic rate (15 events/sec). The average length of
one interpolation function including overlapping is 91.8 ms. The
total number of events in the training corpus is 271078. An exam-
ple of TD can be seen on Figure 2c.

The LPCC vectors situated in centers of IFs were quantized us-
ing VQ with 64 code-vectors. For the codebook training, an LBG
algorithm with2 ! 4 ! : : : ! 64 splitting was used. For sim-
plicity, the code-vectors were marked by symbols [A. . . Z, a. . . z,
0. . . 9, @ and $]. The MG dictionary training and segmentation
was performed on the symbol string resulting from VQ quanti-
zation. The maximal length of sequence wasm=5 and 10 itera-
tions of the segmentation–reestimation loop were performed. The
threshold for minimum number of occurences was set to min. 20
representants of one sequence in the training string. The resulting
dictionary contains 64 1-grams, 1514 2-grams and 88 3-grams. No
4- and 5-grams were found with the requested minimal number.
The total number of sequences is thereforeN=1666. The average
length of one sequence in terms of spectral events is 1.638, which
corresponds to 112.7 ms. An example of multigram segmentation
converted to HTK-like transcription can be seen on Figure 2d and
2e.



4. MODELLING AND RECOGNITION

For each sequence from the MG dictionary, an HMM is trained
using the labelled training corpus. The reasons for this modelling
method are two: first, HMMs are the standard framework for
speech recognition with developed theory and tools, second, the
iterations of HMM segmentation and training can overcome the
errors of initial DT+VQ+MG labelling and improve the acoustic
coherence of units. We call the models trained using original seg-
mentation the “1st generation”, those obtained using preceeding
HMM segmentation “next generations”. The encoding of input
speech into sequences is done using standard Viterbi recognizer
maximizing the product of HMM emission probabilities and lan-
guage model (LM) probabilities. A simple “unigram” LM was
derived either from the MG probabilities (for 1st generation mod-
els) or from evaluation of HMM re-labelling (for next generation
HMMs). So, the likelihood to maximize is:

L =
Y

p(Mi)

p(OjMi) (2)

whereO are the observations,p(Mi) is the a-priori probability of
modelMi and is the LM scale factor. This factor can be com-
pared to Lagrange multiplier weighting the probability of code-
vectors in Entropy Constrained VQ or in Variable to Variable Rate
VQ [5]. It has a significant influence on HMM dictionary size (in
the refinement etap) and on resulting bit rate and speech quality
(during the coding).

4.1. Experimental setup, rate evaluation, results

Simple left-right HMMs without skipping of states were chosen.
The number of emitting states was determined by the number of
TD events in the modelled sequence. For ani�gram, a prototype
HMM with 2i + 1 states was created. In this case, one can say,
that each stable part and each transition of original TD events is
modelled by one state. As parameters, 10 LPCC (1st stream) and
10�LPCC (2nd stream) parameters were used, together with log-
energy and�log-energy (3rd stream). In each stream, the output
probability distribution is given by a single Gaussian. To form
the total output probability, the stream ones are multiplied with
equal weight. For HMM training and recognition, the HTK toolkit
was used. First, the model parameters were context-free initialized
(HInit andHRest tools), then 5 iterations of context dependend
reestimation were run (HERest ). It should be noted, that in this
etap, the HMM training relies still on the original TD+VQ+MG
transcription of signals. These 1st generation models were then
used for new labelling of training corpus, with three different LM
factors=0.0,5.0,10.0. The toolHVite was modified to allow
using of a-priori model probabilities instead of standard bigram
LM. The new segmentation was used to retrain the models (2nd
generation). As the threshold of minimal number of examples was
applied also in the refinement step, the numbers of HMMs in the
final set depend on (see Table 1). The training and test corpora
were encoded using those models. To evaluate the rate needed for
encoding of sequence indices, either� log

2
p(Mi) or log

2
N bits

can be considered to codei-th sequence. In Table 1, this is denoted
byRe (entropy coding) andRu (uniform coding).

5. ADDITIONAL PARAMETERS, SYNTHESIS

The most important information is the time alignment between the
original and synthetic segment. It can be either a simple constant,

train. set test set
 N Re Ru Rs Re Ru Rs

0.0 1514 113 117 11.07 116 120 11.40
5.0 1201 68 74 7.19 69 74 7.29
10.0 894 51 58 5.95 50 58 5.95

Table 1: Resulting rates [b/s] for sequence indices coding.Rs is
the avg. number of sequences per second.

or more sophisticated information (DTW path, etc.). However, it
should be noted, that the number of bits for such information is
very limited. The set of other additional parameters needed to be
transmitted depends on the choice of synthesis method. For ex-
ample, for overlap-and-add based synthesis, the transmission of
energy and pitch is necessary. It is very likely, that also this infor-
mation can be processed on segmental level: a codebook of general
or model-dependent pitch and energy contours should be easy to
find.

5.1. Experimental setup

Unfortunately, the above mentioned synthesis was not yet tested
experimentally and only a simple method based on concatenation
of acoustic examples could be realized. For each model, 8 ex-
amples (signal, LPCC, energy) were found in the training corpus.
When matching with input speech segment, labelled by certain
HMM, first 4 candidate examples with best duration match were
chosen. Among them, the “winner” has minimal DTW distance
from the original in the parameter space. The choice of example
(1 out of 8) can be encoded by 3 bits per sequence. Also, to avoid
energy jumps, having negative influence on the fluency of syn-
thetic speech, a constant forcing the mean energy to match with
the original was transmitted (5 bits). So, the total bit rate is the
sum of sequence bit rate plus 8 bits per sequence.

6. RESULTS

Listening tests were performed with speech encoded in above men-
tioned experiences (LM factor=0.0, 5.0, 10.0). For all three fac-
tors, the synthetic speech sounds naturally, without typical arte-
facts, known from frame based methods, but for =5.0 and 10.0,
the intelligibility is bad. Therefore, we must use null LM ( =0.0),
for which the resulting bit rate (uniform coding) is 117+11.07�8
=205.6 b/s for training and 120+11.40�8=211.2 b/s for test cor-
pus. The best speech quality was found when listening to synthetic
digits and command words. For longer phrases, the intelligibility
was sometimes worse, but in many cases, the comprehension was
not excellent even when listening to the original, due to speaker’s
not very clear pronunciation.

A comparison of spectra of original and synthetic word can
be seen on Fig. 3, audio examples related to this article can be
downloaded as WAV or AU files from:

www.fee.vutbr.cz/˜cernocky/Icassp98.html
From the point of view of computational load, it must be noted

that especially the recognition portion of coding is very complex
and time consuming – in this etap, all models are independent,
each with 3 to 7 states. Different pruning and tying schemes are
currently being investigated in order to limit the number of param-
eters.
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Figure 3: French words “information consommateur”: a) original,
b) synthetic version with=0.0.

7. DISCUSSION, EXTENSIONS

One of main factors, influencing the quality of coding, is the data-
base used for the training. ThePolyvar is recorded over telephone,
quite noisy and the speaking style of the speaker we used is not
excellent. Future experiences will be performed with a different
DB.

Presented coder is a laboratory prototype and is still subject
of further research and improvements. First of all, the primitive
concatenation based synthesis must be replaced by a more sophis-
ticated method. Segmental synthesis has reached high degree of
maturity and a PSOLA or MBROLA based approach should im-
prove significantly the quality of output speech. Another issue is
the speaker adaptation; a speaker normalization in coder and voice
adaptation in decoder must take place. Useful spectral transforms
are cited in [6] and [7], but for non-transcribed data, the classical
approach (class dependent transforms) can not be used directly.

Better evaluation of synthetic speech quality, namely subjec-
tive tests with a group of listeners remain to be done. Also, the
behavior of coder encoding different language from that (those)
of training corpus, and possible adaptation of basic units set when
confronted with a new language should be investigated.

In our opinion, automatically derived segments are good can-
didate for speech recognition, perhaps more coherent and reliable
than widely used description units (context dependent phones).
However, a link must be established between ortographic tran-
scription and those units. A possible solution using joint multi-
grams was suggested in [9].

8. CONCLUSION

We have described a very low bit rate speech coder with auto-
matically derived basic units. Our scheme does not need tran-
scribed speech for training, only sufficient amount of acoustic data.
With a simple synthesis, intelligible and naturally sounding speech
was obtained at 211.2 b/s for single speaker. Among open issues,
the limitation of complexity, more sophisticated synthesis, speaker
adaptation and behavior in multilingual environment are of great-

est importance. In our opinion, speaker and language indepen-
dent coding with mean rate of hundreds b/s is possible using this
scheme.
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[2] G. Baudoin, J.Černocký, and G. Chollet. Quantization
of spectral sequences using variable length spectral seg-
ments for speech coding at very low bit rate. InProc. EU-
ROSPEECH 97, pages 1295–1298, Rhodes, Greece, Septem-
ber 1997.

[3] F. Bimbot. An evaluation of temporal decomposition. Tech-
nical report, Acoustic research departement AT&T Bell
Labs, 1990.

[4] F. Bimbot, R. Pieraccini, E. Levin, and B. Atal. Variable
length sequence modelling: Multigrams.IEEE Signal Pro-
cessing Letters, 2(6):111–113, June 1995.

[5] P. A. Chou and T. Lookabaugh. Variable dimension vector
quantization of linear predictive coefficients of speech. In
Proc. IEEE ICASSP 94, pages I–505–508, Adelaide, June
1994.

[6] K. Choukri. Quelques approches pour l’adaptation aux lo-
cuteurs en reconnaissance automatique de la parole. PhD
thesis, École nationale sup´erieure des t´elécommunications
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