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ABSTRACT

Abstract - In this paper, we present a set of
experiments which explore the use of syllables for
recognition of continuous alphadigit utterances. In
this system, syllables are used as the primary unit
of recognition. This work was motivated by our
need to verify and isolate phenomena seen when
performing syllable-based experiments on the
SWITCHBOARD corpus. The performance of our
base syllable system is better than a crossword
triphone system while requiring a small portion of
the resources necessary for triphone systems. All
exper iments  were per formed on the OGI
A lphad ig i t s  co rpus ,  wh ich  cons is ts  o f
telephone-bandwidth alphadigit strings. The WER
of the best syllable system (context-independent
syllables) reported here is 11.1% compared to
12.2% for a crossword triphone system.

1. BACKGROUND

A robust and reliable alphadigit system has long been
a goal for automated telephone transactions. Recent
work on both alphabet and alphadigit systems has
focused on resolving the high confusion rates for the
E-set (B, C, D, E, G, P, T, V, Z, THREE), A-set (A, J,
K, H, EIGHT). Further, for telephone bandwidth data,
the S-F confusion pair is also important.These
problems occur mainly because the acoustic
differences between the letters of the sets are
minimal. Even humans have trouble making such
distinctions in the telephone environment due to
bandwidth and microphone constraints.

1.1. State-of-the-Art in Alphadigit Recognition

Phoneme-based models, when trained in a strongly
supervised mode, are capable of capturing phonetic
detai l .  This is especial ly t rue in the case of
context-dependent phonemes. In the case of spoken

letters, discriminating information exists for a short
duration in the form of glottal stops, typically at the
onset of the word. Most state-of-the-art systems
therefore incorporate modeling of onset segments,
spectral transitions, and the use of letter-dependent
models [1]. Detailed phoneme modeling however
introduces a number of chal lenges such as a
tremendous increase in complexity and search space,
not to mention the requirement to have narrowly
transcribed speech data. Since the alphadigit problem
is essentially a small vocabulary recognition task, the
growth in complexity of such systems can be
mitigated by using longer acoustic models. A
syllable-sized unit is one such unit — extremely
stable and well-suited for simultaneous temporal and
spectral modeling. With syllables, these fine-grain
modeling approaches may become unnecessary since
a longer context will allow the models to learn these
events statistically. Recent work on using syllables for
large vocabulary tasks [2] has shown promise.

Most research in the last twenty years on continuous
telephone alphadigit recognition has been centered
around phone-based, speaker-dependent systems.
Word error rates (WER) for such systems [3,4] are
typically in the 10% range. Speaker-independent
technology [5] lags speaker-dependent technology
with published error rates extending to 20%. In
general, alphabet recognition is a much more difficult
task than digit recognition. State-of-the-art connected
telephone digit recognition performance is typically
less than 1% WER.

1.2. OGI Alphadigit Corpus

The OGI Alphadigit corpus [6] is a recent release and
has  many  th ings  in  common w i th  the
SWITCHBOARD corpus [7] (SWB). It is a telephone
database collected using a T1 interface to the
telephone network. There are over 3000 subjects in
the corpus. Each was given a list of either 19 or 29



alphanumeric strings to speak. The strings in the lists
were each six words long, and each list was designed
to balance the phonetic context of all letter and digit
pairs. There were 1102 unique prompting strings.

Since there have been no published results on this
data, there exists no standard partitioning of the
database for common evaluations. Hence, we have
developed such a partitioning by splitting the data
along gender lines. Table 1 shows the separation of
the training and testing data. In addition we have
defined a 3000 utterance evaluation set from the test
data, on which all of our results are quoted. This test
set definition [11] is publicly available.

2. SYLLABLE-BASED RECOGNITION

While triphone-based recognition has for many years
been the dominant method of modeling speech
acoustics, triphones are a relatively inefficient
decompositional unit due to the large number of
frequently occurring patterns. Additionally, since a
triphone unit spans an extremely short time-interval,
such a unit is not suitable for integration of spectral
and temporal dependencies. For applications such as
SWB, where performance of phone-based approaches
is unsatisfactory, focus has shifted to a larger acoustic
context. The syllable is one such acoustic unit. Its
appeal lies in its close connection to articulation, its
integration of some co-articulation phenomena, and
its potential for a relatively compact representation of
conversational speech.

The use of an acoustic unit with a longer duration also
makes it possible to simultaneously exploit temporal
and spectral variations. Parameter trajectories [8] and
multi-path HMMs [9] are examples of techniques that
can exploit the longer acoustic context, but have had

marginal impact on triphone-based systems.

Our recent experiments with syllables on SWB have
shown encouraging results, performing on par with
comparable triphone systems [2]. Extension of the
SWB syllable systems to the alphadigit task was an
attempt to validate, on a smaller vocabulary, the
approaches taken in our LVCSR system. In addition,
the alphadigit task allowed us to isolate phenomena in
a domain where lexical problems and pronunciation
variation were not dominant.

One problem we are particularly interested in
examining is the modeling of monosyllabic words. In
standard evaluations on SWB, we found that these
words  domina ted  the  e r ro r  ra te .  Thus ,  an
improvement in monosyllabic word modeling could
have a profound effect on the performance of LVCSR
systems. The alphadigit task is a good application for
evaluating new approaches to monosyllabic word
modeling as the alphadigit vocabulary is comprised
almost entirely of monosyllabic words.

3. EXPERIMENTS AND RESULTS

We initially developed two baseline systems: a
word-internal and a crossword triphone system. Both
of these were carefully constructed to provide state-
of-the-art performance on a standard SWB task
within the constraints of the technology used for
implementation. All systems described in this paper
were based on a standard LVCSR system developed
from a commercially available package — HTK [10].
Again, we framed the baseline alphadigit system
around LVCSR technology as our purpose was to
validate our SWB results.

3.1. Triphone Systems

Both triphone systems use a phone inventory
consisting of 42 phones and a silence model (in
addition, a word-level silence model was used). All
phone models were standard 3-state left-to-right
models without skip states. These models were
seeded wi th  a  s ing le  Gauss ian observat ion
distribution. The number of Gaussian mixture
components was increased to 32 per state during
reestimation using a segmental K-means approach.

A context-dependent phone system was then

Number of Speakers / Utterances

Male Female Children

Training 1064 / 24611 1150 / 26405 22 / 500

Dev Test 355 / 8200 384 / 8867 8 / 188

Eval 71 / 1582 77 / 1710 2 / 37

Table 1: A proposed partitioning of the OGI Alphadigit
corpus using a 75%/25% partition criterion.



bootstrapped from the context-independent system.
The triphone models were initialized with a subset of
the OGI data consisting of 10% of the training
utterances. The single Gaussian monophone models
from the context-independent system were clustered
and used to seed the triphone models. Four passes of
Baum-Welch reestimation were used to generate
single-component mixture distributions for the
triphone models. These models were then increased to
twelve Gaussians per state using a standard divide-by-
2 clustering algorithm. The resulting system had
25202 virtual triphones, 3225 real triphones, 9675
states and 12 Gaussians per mixture. The final count
for the number of Gaussians is, however, reduced by
tying states in the triphones.

3.2. Syllable Systems

The model topology for the syllable models was kept
similar to the word-internal phone system. However,
each syllable model was allowed to have a unique
number of states. Initially, the number of states was
determined from our best SWB syllable models. The
number of states in these models was selected to be
equal to one half the average duration of the syllable,
measured in 10 msec.  f rames.  The durat ion
information for these syllables was measured from a
forced alignment of SWB data based on a state-of-
the-art triphone system. Syllable models were trained
in a manner analogous to the word-internal phone
system without the clustering stage. The resulting
models had 8 Gaussians per state.

3.3. Results and Analysis

Table 2 summarizes the performance of  the
experiments described in this paper. The context-
independent syllable system not only outperforms its
triphone counterpart (by approximately 2% absolute),
it also outperforms the crossword triphone system by
1% absolute difference. It is also interesting to note
the word error rates for both the alphabets and digits
separately. The syllable system makes its greatest
gains in recognition of the alphabets whereas it lags in
performance on the digit recognition.

Table 3 gives an analysis of the primary contributors
to error. It is somewhat curious to note that the
syllables outperform the triphones in E-set and A-set

recognition. One would expect the phones to do better
in this arena given their fine-grain phonetic contexts.
The phone systems are superior performers on both
the nasals and the s-f pairs, however.

Not only do the syllable models achieve a lower word
error rate, but they do so in a more efficient manner.
Table 4 notes some complexity statistics for both
triphone systems and our best syllable system. Notice
that the number of models has dropped by an
enormous amount from the context-dependent cross-
word triphones to the context-independent syllables.
The number of total states is a somewhat misleading
statistic since the triphone systems use state-tying.
Though the syllable system contains more states than

Table 3: Percentage of confusions in the respective sets.

Confusion set Triphone
Error Rate

Syllable
Error Rate

E-Set 17.7% 16.5%

S-F pair 15.0% 17.6%

A-Set 10.5% 8.3%

Nasals 8.5% 13.2%

System Total
WER

Alphabet
WER

Digit
WER

XWRD Triphone 12.2% 15.2% 4.7%

WINT
Triphone

13.4% 16.8% 4.8%

Syllable
(New Durations)

11.1% 12.8% 6.8%

Table 2: Performance of triphone and syllable systems

System Logical
Models

Real
Models

Number
of States

XWRD Triphones 25202 3225 2045

WINT Triphones 25202 1011 249

Syllables 42 42 900

Table 4: Complexity of triphone and syllable systems



the word-internal triphones, the search space for the
syllable system is significantly smaller. Both of these
factors result in a speedup of seven times compared to
the triphone system (which means a standard
evaluation runs in a day rather than a week).

In the experiments we have done thus far, we have not
explored explicit durational modeling in detail. Noise
modeling has also not been pursued. To this end, in a
recent experiment we defined a new syllable system
which uses explicitly marked noise to train the silence
model. Thus, the silence model is forced not to
discriminate between silence and noise. In earlier
systems this was causing problems, because fricatives
were being inserted where noise was present in the
acoustic data. Additionally, all models in this system
were limited to a maximum of 20 states. This is a
precursor to an LVCSR experiment using an equal
number of states per syllable model.

4. CONCLUSIONS AND FUTURE WORK

Table 2 summarizes the performance of our syllable
alphadigit system and comparable triphone systems.
The best syl lable system performance gives
approximately 1% absolute improvement in WER
over a comparable crossword triphone system.
Though, the syllable system yields performance
superior to the triphone system, it falters in manners
similar to the triphone systems—namely, the E-set
and S-F confusion pair. Thus, the syllable system may
be able to gain performance in manners similar to the
phone-based systems — context-dependency and
state-tying, for example.

Particularly, we are exploring the use of context-
dependent (crossword) syllable models. Explicit noise
modeling is also being researched since we observed
in our analysis that the silence model is generally
subst i tu ted for  f r ica t ives .  We have not  ye t
incorporated more sophisticated temporal models into
our system. Inclusion of this information could have a
significant effect on performance, especially with the
S-F pair which has little spectral difference in
telephone bandwidth.
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