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Ecole Nationale Sup´erieure des T´elécommunications, Paris, France

ABSTRACT

Harmonic plus noise models have been successfully applied
to a broad range of speech processing applications, includ-
ing, among others, low bit-rate speech coding, and speech
restoration and transformation. In conventional methods,
the frequencies, the relative phases and the amplitudes of
the pitch-harmonic components are assumed to be piece-
wise constants over an analysis frame. This assumption is
inadequate in segments where fast variations of these pa-
rameters may occur, e.g. phoneme-to-phoneme boundaries
or speech onsets. In this contribution, a time-varying model
of the pitch-harmonic parameter is presented. It is based on
a basis expansion technique, consisting in representing the
time-varying functions as a linear combination of fixed ba-
sis function. An estimation procedure for the parameters of
this expansion is presented. Results are provided to demon-
strate the effectiveness of this approach.

1. HARMONIC-PLUS-NOISE MODELS

Sinusoidal as well as Harmonic-plus-noise models have been
applied with success to solve many speech processing prob-
lems. Harmonic-plus-noisemodel (HNM) assumes the speech
signal to be composed of a quasi-harmonic parts(t) and a
noise partn(t):

x(t) = s(t) + n(t) (1)

The quasi-harmonic part, in voiced segments, reflects the
(local) periodicity of the speech signal. The noise partn(t)
accounts for the cycle-to-cycle variations of the glottal air-
flow, the friction noise, etc...

Harmonic plus noise models have proven to be useful
in many speech processing applications, including among
others low-bit rate speech coding [6], speech transforma-
tion (time scaling, pitch scaling) [3], text-to-speech synthe-
sis and co-channel speaker separation [7].

In a quasi-harmonic model,s(t) is represented as a su-
perposition of almost harmonically related sinusoidal com-
ponents

s(t) =

K(t)X
k=1

�k(t) cos(�k(t)) (2)

where�k(t) and�k(t) denote respectively the amplitude
and phase at timet of thek-th pitch-harmonic component.
Note that such decomposition is not unique unless some
constraints are imposed for�k(t) and�k(t). Typically, it
is assumed that�k(t) is a low-pass function,i.e. the sup-
port of the Fourier transformF(�k) of �k is approximately
included in [��; �], where� is a ’small’ number, and the
support ofF(cos(�k(t))) lies outside this interval. Under
this assumption, the instantaneous frequency of each com-
ponent in (2) is defined unambiguously as_�k(t), where _f(t)
denotes the time derivative off(t). The model isquasi-
harmonic because the instantaneous frequencies_�k(t) are
assumed to beapproximately harmonically related, in the
sense that

_�k(t) � 2�k=P (t)

whereP (t) is the local pitch-period. The time-variations
of �k(t) and the deviations of_�k(t) from exact harmonicity
reflects the variations of the supra-glottal cavities transfer
function and of the glottal pulse shape.

The noise componentn(t) may be modeled as a quasi-
stationary random sequence. It has been shown that this
component may be adequately fitted by filtering a stationary
white noise by a time-varying linear filter (see, for example,
[4]).

In this contribution, we focus only on the estimation of
the quasi-harmonic component. With few exceptions, the
methods proposed to date to estimate�k(t) and�k(t) are
frame-based: the functions�k(t) and _�k(t) are assumed to
be approximately constant1 over the analysis frame (typical
values correspond to between 20 and 30 ms). The functions
�k(t) and�k(t) are then reconstructed by (linear or poly-
nomial) interpolation between the values estimated over the
successive analysis frames. While this approximation is rea-
sonable in stationary speech segments (e.g., vowel nucleus)
it is not accurate when modeling sharp transitions occuring
at phoneme boundaries, voicing onsets, etc. These effects
are typically not annoying in applications where coarse-grained
speech analysis is sufficient (e.g. low bit-rate coding), the
perceptual effect of these mismatches being in general lim-
ited. For fine-grained analysis (which is required, for exam-

1An exception to that rule is the work by Marques and Almeida [5] who
proposed to use a generalized polynomial phase for sinusoidal component
to boost accuracy.



ple, for high-quality speech transformation, speech disorder
diagnosis...), piecewise constant approximation is clearly
inappropriate.

In this paper, it is proposed to model�k(t) and�k(t) as
time-varying functions. For that purpose, we use abasis ex-
pansion approach, consisting in representing the functions
�k(t) and�k(t) as a linear combination of known functions
of time. As shown below, this technique allows to obtain
better fit in transient segments. As another application, the
basis expansion technique makes possible to model syllable
long speech segments (100 to 200 ms) with a single set of
parameters. This distinctive property offers new perspec-
tives for speech processing (e.g., restoration and transfor-
mation for example), that still need to be investigated.

2. A LONG-TERM PARAMETRIC MODEL FOR
QUASI-HARMONIC SPEECH

The quasi-harmonic model (2) can be equivalently rewritten
as

s(t) '

K(t)X
k=1

ak(t) cos(k�(t)) +

K(t)X
k=1

bk(t) sin(k�(t))

The time-varying amplitude and phase in model 2 are re-
lated toak(t) andbk(t) through the relations

�k(t) =
p
ak(t)2 + bk(t)2;

�k(t) =

�
k�(t) � arctg(bk(t)=ak(t)) if ak(t) > 0
k�(t) � arctg(bk(t)=ak(t)) + � if ak(t) < 0

The derivative of the function_�(t) models the pitch-contour,
the evolution of the fundamental frequency. Because we
want to model a quasi-harmonic signal, it is assumed that
the instantaneous frequency of thek-th harmonic compo-
nent is (approximately )k _�(t): this property is ’built-in’ in
our model. The in-phaseak(t) and the in-quadraturebk(t)
components account for both(i) pitch-harmonic amplitude
variations, and(ii) deviations from the exact harmonicity,
reflecting the slow variations of the phase distribution of the
pitch-harmonics. Note that the amplitude and phase vari-
ations are in fact dependent, since they are both related to
changes of the vocal tract transfer function and of the glottal
pulse shape.

As outlined in the introduction, we model the functions
ak(t) andbk(t) using a basis expansion approach. The ba-
sic idea behind this approach consists in representing the
functionsak(t) andbk(t) and�(t) as linear combinations
of known functions of time.

More specifically, letgj(t), j = 0; 1; � � � a known fam-
ily of functions. We wish to estimate a given (unknown)
functionf(t) (e.g.,f(t) = ak(t), f(t) = bk(t) or f(t) =

�(t)). Assume thatf(t) can be expressed in the form of an
infinite expansion

f(t) =

1X
j=0

��j gj(t)

To limit the effectivenumber of parameters in the expan-
sion, somesmoothnessor regularityassumptions have to be
stated. In this context, the smoothness condition aboutf is
that the coefficients in the expansion decrease at a certain
rate asj ! 1. The projection approach consists in esti-
mating a truncated expansion,fp(t) =

Pp

j=0 �jgj(t) This
way, we reduce the problem of function estimation to that
of parametric estimation, though the number of parameters
we have to estimate is not bounded a priori and can be large.
In our approach, the parameters�j are estimated using lin-
ear least-squares, as detailed below. Of course, the type of
functions as well as the number of functions needed in the
expansion is not known a priori, and should be adapted to
the speech segment. These aspects are shortly discussed be-
low.

2.1. Model for the phase function�(t)

It is known that pitch variations in voiced segments are very
smooth. In most cases a low-order polynomial function
(say, of order 2 to 3) is sufficient to fit the track over the anal-
ysis frame (see section 4). As the result, the phase function
�(t), as a integral of the pitch track also is a polynomial,

�(t) =

MX
m=1

�mt
m

2.2. Model for the amplitude functionsak(t) and bk(t)

To estimateak(t) andbk(t), we use a projection type esti-
mate on a B-spline (box-spline) basis [2].
Box-SplineB-splines basis has been introduced by de Boor
[1] (see also [2]). A B-spline consists of polynomial pieces,
connected in a special way: a B-spline of degreeq, consists
of (q+1) polynomial pieces each of degreeq; each polyno-
mial pieces join atq inner knots: at the joining points, the
derivatives up to orderq � 1 are continuous. The B-spline
is positive on a domain spanned byq+2 knots: everywhere
else, it is zero. Except at the boundaries, it overlaps with2q
polynomial pieces of its neighbors. At a givent, (q + 1) B-
spline are non zeros. In practice, we use B-spline of degrees
three, with regularly spaced knots.

Denotep the order of the projection estimate andBj(t),
1 � j � p the B-splines; thep-th order approximation of



ak(t) andbk(t) writes

a
(p)
k (t; a) =

pX
j=1

�k;jBj(t)

b
(p)
k (t; a) =

pX
j=1

�k;jBj(t)

wherea denote the amplitude parameters vector

a = [�1;1; �1;1; �1;2; : : : ; �K;p]

3. PARAMETER ESTIMATION

The pth order truncation approximation ofs(p)(t) of s(t)
writes

s(p)(t; a;�) =

KX
k=1

a
(p)
k (t; a) cos(k�(t)) + b

(p)
k (t; a) sin(k�(t))

This approximations(p)(t; a;�) dependslinearly ona and
non-linearlyon�.

DenoteX1; X2; � � � ; Xn the samples of the observed
signal. Under the model (1),Xk = s(kTe) + Nk, with
Nk = n(kTe) andTe is the sampling period (we set:Te = 1
for simplicity). We estimate the parameters using least-
square,i.e.minimize the following criterion :

J(X ; �; a) =

nX
j=1

(Xk � s(j; a;�))2 (3)

This is a non-trivial optimization problem, because the num-
ber of samples and the number of parameters involved in
the minimization procedure can be very large (typical val-
ues are:n 2 [1000; 5000] samples, while the number of pa-
rameters can be as large as one thousand !). Hopefully, sev-
eral approximations can be done that reduce dramatically
the computational requirements.

Given the parameter vector�, linear least-squares may
be used to estimateda(�); Optimal values of� may be ob-
tained by minimizing the reduced least-square criterion

~J(X ; �) = J(X ; �;da(�))

This can be done using standard optimization procedure. In
practice, it is possible to obtain rather accurate initialization
for the parameter� by fitting the estimated pitch contour
(obtained in a preliminary step using a standard pitch esti-
mation device), by low-order polynomials. Only few iter-
ations are thus needed to converge. In a simplified yet ef-
fective version, the non-linear estimation procedure needed
to estimate the parameter of the phase function is simply
by-passed.

Note finally that accurate approximation of the linear
least-squares solution can be obtained. DenoteHk;n(�) the
(2p� n) regression matrix defined as

Hk;n(�) = [B1(1 : n) cos(k�(1 : n))

B1(1 : n) sin(k�(1 : n)); : : : ; Bp(1 : n) sin(k�(1 : n))]

where, for a given functionf(t), f(1 : n) denotes the column-
vector [f(1); � � � ; f(n)]T . For a given numberp of basis
functions, it may be shown that, for�1 6= 0, we have

n�1Hk;n(�)THk;n(�) = �n +O(n�1) (4)

n�1Hk;n(�)THl;n(�) = O(n�1) k 6= l (5)

where�n is a matrix which does not depend onk and�.
In other words, given the phase function�(t), the B-spline
modulated bycos(k�(t)) andsin(k�(t)) form approximately
an orthogonal family of vectors. As a result, pseudo-inversion
of the complete regression matrix can be by-passed, and
approximate solutions of the linear least-squares estimation
step can be evaluated by(i) computing scalar products,(ii)
multiplying the results by a fixed(2p� 2p) ��1n matrix (of
course, this matrix inverse can be computed once for all).

4. RESULTS

In this section preliminary results are presented to support
our findings. Here, we focus on the extraction of the stochas-
tic componentn(t), a problem which proves to be difficult
using conventional method. Extraction of this component is
useful, for example, for high-quality speech transformation
(see [8]).

In this experiment, we analyze a speech segment that
has been uttered by a male speaker (sampling freq.= 16
kHz). In figure 1, we display a 180 ms segment (transition
between a voiced fricative /z/ and the vowel /i/). and the cor-
responding pitch contour. On the same plot, the estimated
instantaneous frequency (obtained by fitting a third order
polynomial) is displayed. It is seen on this example that a
low-order polynomial is sufficient to capture the variation
(whereas it seems inappropriate to assume that the pitch is
constant even on a very short-time scale).

We compare our estimation procedure with a conven-
tional method (see for example [3]), consisting in(i) esti-
mating the amplitude and phase of the pitch-harmonics from
the short-term Fourier transform (window length 30 ms, over-
lap 20 ms)(ii) re-synthesizing the speech signal using an
overlap-add procedure. In this experiment, we use 3rd or-
der B-spline, and the number of knots has been set to 20.
The number of parameters fitted to the data are equivalent in
the two methods. To fit the parameter of our model, we use
the simplified method (without re-estimation of the phase)
(figure 3). We display, on the same scale, the residual sig-
nals, defined as the difference between the speech signal and



the fitted harmonic models. As seen on this plot, the time
varying model efficiently removes the harmonic component,
even at the phoneme boundary. The residual obtained with
the conventional method (see figure 2) still contains har-
monic components (especially at the boundary phoneme).
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Figure 1: (a) a 180 ms voiced pitch segment, (b) pitch ap-
proximation by a 3rd order polynomial
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Figure 2: Synthetic signal and its corresponding residual
with the conventional method
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Combińes Avec Des Ḿethodes Statistiques, Pour La
Modification De La Parole Et Du Locuteur. PhD thesis,
Ecole Nationale Sup´erieure des T´elécommunications,
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