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ABSTRACT

The paper addresses the problem of detecting two
spectrally equivalent parametric processes (SEPP): the
noisy AR process and the ARMA process. Higher-order
statistics (HOS) are shown to be effective for detection.
Two HOS based detectors are derived and compared.
The first detector studies the singularity of an HOS-
based Yule-Walker matrix. The second detector filters
the data by an AR filter estimated from the data; the
residual HOS are then shown to be effective for the
SEPP detection problem.

1. INTRODUCTION

The detection and classification of signals contaminated by
noise has been intensively studied in the literature [11]. Op-
timal detectors, based on the Neyman-Pearson criterion,
can be derived, when statistical properties regarding signal
and/or noise are available. Unfortunately, these detectors
can be difficult to implement, because of intractable com-
putations. Moreover, the signal and/or noise statistics can
be unknown. In such cases, one must resort to suboptimal
detectors. These detectors are based on discriminating fea-
tures, relative to a parametric or non parametric analysis.

This paper studies the suboptimal detection of spectrally
equivalent processes (SEP’s). SEP’s have been observed in
many signal processing applications including communica-
tion systems. For instance, it is well known that many
modulation signals (PSK, QAM) have the same mean and
the same power spectral density (or equivalently second-
order statistics). Consequently, suboptimal detectors based
on first or second-order statistics yield poor results. Sev-
eral alternatives based on higher-order moments or cumu-
lants have then been studied for the classification of these
modulation signals [1][10]. This paper proposes to model
the SEP’s by two parametric spectrally equivalent models
(SEM’s): the ‘noisy AR model’ (see eq. (1)), and its SE
ARMA model (see eq. (3)). It is well-known that these
two models have the same AR parameters. Consequently,
the AR parameters are not suitable for SEP detection. The
main contribution of the paper is to show that the SEM
MA parameters are effective for the SEP detection prob-
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lem. The paper is organized as follows. Section 2 formu-
lates the problem. Section 3 presents a detector based on
the Singularity of a HOS-based Yule-Walker Matrix (SM).
Section 4 studies a new detector based on HOS of filtered
data, where the filter parameters are estimated from the
data. Section 5 studies the test function related to both
detectors. Simulation results and conclusion are reported
in sections 6 and 7 respectively.

2. PROBLEM FORMULATION
Consider a ‘noisy AR time series’ yo(n) defined by:

Yo (n) =z (n) +b(n) (1)

where z(n) is an AR process driven by an iid non-Gaussian
sequence e(n):

P

a(n) ==Y aja(n—j)+e(n) (2)

Jj=1

and b(n) is the additive Gaussian noise independent of e(n).
It is well-known that yo(n) has the same mean and the same
power spectral density as an ARMA (p,p) process (with the
same AR parameters) driven by an iid sequence g(n) defined
by:
P P
yi(n) == ajg(n—3)+ Y bigln—j)  (3)
i1 i=0

The spectral equivalence property for yo(n) and yi(n)

yields:
a

Y2g = Y2p b_p (4)
p

Moreover, parameters {b;}, ,  can be computed from
Yoe>Yop and {a;};_, , via spectral factorization. The

seeoP
SEP detection problem is the following binary hypothesis

test:

Ho : y(n) = yo(n)

Hy :y(n) = yi(n)
In principle, if the pdfs of the various innovation processes
are known, and if appropriate priors are available, the
Bayesian/Maximum Likelihood approach could be used.
However, this approach is intractable in the non-Gaussian
context, and, of course, the pdfs have to be known. Hence,



we propose two suboptimal detectors based on higher-order
cumulants.

3. SM-BASED DETECTOR

This section recalls a SEP detector proposed in [3], based
on the Higher-Order Yule-Walker Equations (HOYWE) for
the SEP detection. The HOYWE for an AR(p) process are
defined by [8]:

P

ZajC,f(mfj,O,...

j=0

,00=0,Ym>0 (5)

where C% (py, pa, - - -, Pr_1) denotes the kth-order cumulant
of the AR process at lag p= (p;, py,---,p;_1).- The prop-

erty CY°(p) = Ci(p) holds Vk > 2,Vp € Z"~', since the
additive noise is Gaussian and independent of z(n). De-
note Ap(§) = det(R,(§)) where Ry(€) is the Toeplitz ma-

aé‘l) a‘nd
€opr1) €

trix whose first row and first column are (§,4,---

(€py1s---rEappn)” respectively, with €= (£y,...
RZ*! Denote
Ci=(C¥(1-p,0,... ,0)" (6)

The concatenation of eq.’s (5) for m € {1,...,p+ 1} yields

,0),...,C¥ (1 +p,0,...

R,(Ch).(1,a1,...,a5)" =0 (7)
hence
Ao = A,(CP) =0 (8)

On the other hand, for an ARM A(p,p) process, eq.’s (5)
hold for m > p, but not for m € {1,...,p}. A large num-

ber of simulations have shown that A; 2 AL(Cr) # 0,
where Cj, is defined as in (6) with cumulants of the ARM A
process. Therefore, we assume that it is true in the rest of
the paper. The SE noisy AR and ARM A process detection
can then be expressed as a simple binary hypothesis testing
problem:

Ho: (Noisy AR process) A =Ag=0 9
H,: (ARMA process) A=A;#0 (9)

Define (A:k as the sample cumulant vector obtained by re-
placing the true cumulants in (6) by their usual estimates,

and denote A 2 A,(Ck). The noisy AR and ARMA
process cumulant vector estimates are asymptotically un-
biased Gaussian vectors with: Nlim NE[(Cy, — C)(Cy, —
— 400

Ci)T | H;] = X}, [8]. According to ([2], p. 211), the deter-
minant estimate A is asymptotically an unbiased Gaussian

variable with:
lim NE[(A — A)?/Hi = DiTSiDL 262 (10)

— o0

In (10), D% is a vector whose ;" element is Di (j) =
_ ] |¢]
(04, (§) /0¢,;)(C}). Tt can be proved that Dj (j) =
m=1
(Cof (Rp(CL))m, where |§j| =p+1—|p+1—j| denotes
the number of &; in Ry(§) and (Cof(Rp(.)))m the Ry(.)

h

matrix cofactor computed at the m'™ occurrence of ;. The

statistical properties of A can then be asymptotically de-

rived under both hypotheses:

VNA ~ N(0,02)

Hy: ARMA process VN (3 - Al) ~ N(0,0%)
(11)

Hp : Noisy AR process

4. MA DETECTOR

Denote by zi(n) the output of the FIR filter with Z-
transform A(z) = > % arz”" driven by yi (n). The SEP
detection problem can be rewritten as:

Ho : z(n) = 20(n) = e(n) + Y, aib(n — 1)
Hi:z(n)=2z1(n)=>Y 7 jayn—1)=>  bign—1)

12
Eq. (12) shows that 1) zo(n) is the sum of a Gausgiar)l
MA(p) sequence and an iid non-Gaussian sequence e(n).
Consequently, the kth-order cumulants (k > 2) of zo(n) are
zero except at lag p = 0; 2) z1(n) is a pure non-Gaussian
MA(p) sequence, whose kth-order cumulants are non-zero
for a specific set of lags. Define C;’ (p) as in (5). Giannakis
[5] established that the MA parameters of a non Gaussian
ARMA (a,8) model can be identified uniquely from cumu-
lants which belong to the following set:

I, = {p|max(a,8) —a < p, < p; < B+2a,p,=0,1=3,.,k—1}

Using basic properties of kth-order cumulants, the following
binary hypothesis testing problem can be considered:

Ho:gzgozo
Hy:g=g1#0

where g; is the theoretical HOS vector whose elements are
Cit (p), p € I, p # 0. Denote by g the vector obtained by
replacing the true cumulants in g by their usual estimates
computed from N samples. The asymptotic statistical be-
havior of the HOS vector estimate g is [4]:

mNN(O7EO)
VN (g—g1) ~ N (0,%1)

(13)

(14)

where ¥ and ¥; are two matrices independent of N. The
asymptotic statistics of g can be used to derive kth-order
cumulant based likelihood ratio detectors. In practical ap-
plications, AR parameter vector a = [1, a1,...ap]” is un-
known. Consequently, it has to be estimated. Any higher-
order cumulant based method can be used since it is blind
to the additive noise. In this case, g is formed by cu-
mulants of the output of the FIR filter with Z-transform

Zl\(z) =>r arz~F driven by y;(n).

5. STUDY OF THE TEST FUNCTION FOR BOTH
DETECTORS

Eq ’s (11) and (14) show that the SEP detection problem
can be viewed as two HOS based detection problems, in-
volving Gaussian test statistics. The main difference be-
tween the two detectors is that the SM detector is one-
dimensional, contrary to the MA detector.



5.1. Known Parameters

Parameters {a;};_; {0}, 1,5 7V2es Yop and 7y, can
be determined, when the spectrum of the two SEP’s is
known (parameters {a;}, , . 7s. and 7, are estimated
by fitting a noisy AR model to the data and parameters
{bi};_1..., 172, are computed using eq. (4) and spec-
tral factorization). The likelihood ratio detector reduces
to compare a quadratic form of normal variables to a suit-
able threshold, depending on the probability of false alarm
(PFA) and the model parameters. The test statistic distrib-
ution can be expressed as mixtures of central or non-central
x? distributions [7]. Tt can also be expanded in MacLau-
rin or Legendre series ([7], pp. 168-173) or computed nu-
merically using appropriate algorithms such as the Imhof
algorithm. This paper focuses on practical applications, for
which the noisy AR and ARMA parameters are unknown.

5.2. Unknown Parameters

The SEP detection problem defined in (9) and (13) is a
composite hypothesis test, when the model parameters are
unknown. This part studies a composite hypothesis test
very similar to the Hinich linearity test ([9], pp. 46-48).
Assume that M independent realizations of @ (denoted
({%)ji1 M) are available, where ¢ denotes Aor g. These
M measurements can be obtained from one single signal
by segmentation. This segmentation procedure consists of
considering a N-sample signal as M segments of K samples
(with N = MK). Define @ and S as the sample mean and
covariance matrix of the sequence (fﬁ])

1 M~
=17 Zj:l Pj
M A~ T
=2 (% %) (% -9)
Using the asymptotic normality of vector (@, ..., fﬁM)T, the

generalized likelihood ratio detector for the parametric SEP
detection problems (11) and (14) is defined by [9]:

j=1,...,M"

(15)

W) 6l

Ho rejected if T2 = MB'S % > Ao (16)

Ao is a threshold which can be determined from the distri-
bution of T2 under the null hypothesis and the PFA. Giri
[6] showed that the statistic $T2 has an F-distribution

with (g, M — q) degrees of freedom, under the null hypoth-
esis. Note that for the SM detector, T is the square of
a Student statistic with M degrees of freedom. Statistic
T? has a non-central Hotelling distribution, under hypoth-
esis H; [9]. Unfortunately, this distribution is difficult to
study. Consequently, the probability of detection (PD) is
computed via Monte-Carlo simulations.

6. SIMULATION RESULTS

Many simulations have been performed to validate the pre-
vious theoretical results. Here, simulation results are re-
ported for the composite hypothesis detector (i.e. unknown
parameters). The SEP detector performance is evaluated
in terms of Receiver Operating Characteristics (ROC’s) for
different number of samples and different signal to noise
ratios (SNR’s). These curves represent the probability

of detection (PD) as a function of the PFA. First, an
AR(1) process with parameters [1; —0.5] driven by a zero
mean exponentially distributed i.i.d. input (with variance
42 =1) is considered. This case is very simple since closed
form expressions for the ARM A parameters (input variance
'yi and parameters b;) are available as functions of noisy
AR process parameters. The spectrally equivalent ARM A
process is driven by a zero mean exponentially distributed
input. Numerical results have been computed using Monte-
Carlo runs. Fig.’s 1 and 2 show the SM and MA detector
ROC’s for different SNR’s (and a fixed number of sam-
ples M = 5 and K = 2000). The test improves when the
SNR decreases. Indeed, when SNR is low, the noisy AR
process is close to a Gaussian process, contrary to the SE
ARM A process. Thus, the two SE processes can be easily
distinguished for low SN R’s. Fig.’s 3 and 4 present the SM
and MA detector ROC’s for different numbers of samples
N and a fixed SNR = 8B. Obviously, the higher NV, the
better the detector performances. These simulations have
been carried out for a given AR(1) process. However, other
model orders and AR parameters have been studied and
give similar performance. For instance, fig’s 5 and 6 show
the detector ROC’s for a noisy AR(4) process with para-
meters [1,—0.5,—0.25,—0.125, —0.06], for different numer
of samples.

7. CONCLUSION

This paper studied two suboptimal detectors based on
higher-order cumulants for the detection of spectrally equiv-
alent processes (SEP’s). The SEP’s were modeled by two
spectrally equivalent parametric processes: the noisy AR
process and the ARMA process. The first detector was
based on the singularity of a HOS-based Yule-Walker ma-
trix. The second filtered the data by an AR filter estimated
from the data, and studied the nullity of the residual higher-
order cumulants. The distribution of the test statistics was
studied. Theoretical results were supported by simulation
studies.
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