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We propose a reconstruction method of continuous-time random
signals by fitting nonuniform samples to a band-limited
continuous-time wavelet basis. Based on wavelet analysis, our
method uses a windowing technique with variable-sized
intervals, taking advantage of the nonuniform signal sampling.
This method leads to analytical formulas for the reconstructed
continuous-time signal, and as well as for its derivatives. This
can be very useful to perform a parametric estimation of so-
called continuous-time ARMA models adopted for continuous-
time random signals modeling. Several parameters like mother
wavelet type, time shift interval between consecutive wavelets
and resolution levels number can be adapted, function of nature
of nonuniformly sampled signal. In this paper, we describe the
principle of the proposed reconstruction method and discuss its
performances.
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One of the usual tasks in digital signal processing is the spectral
analysis of sampled signals. Traditionally, the power spectral
density (PSD) of a band-limited signal is estimated by applying
the discrete Fourier transform (DFT) or the fast Fourier
transform (FFT) to a samples sequence obtained by uniform
sampling (i.e., at periodic instants) of a continuous-time process.
However, in the analysis of real-world measurements,
nonuniformly sampled processes occur in various applications.
In some of these applications (laser velocimetry, Doppler
odometry, microscopic particles counting, radioactivity
measurements, radar signal processing etc.) data are
nonuniformly time spaced with no underlying basic sampling
interval [5]. In some others applications (speech or video
transmission on ATM networks, signals transmission etc.) or in
the case of temporary malfunctions of measurement sensors, the
nonuniform sampling may be due to missing observations. In
this last case the observations can occur only at multiples of
some « hidden » sampling period [4].

Traditional signal processing techniques are irrelevant for
nonuniformly sampled signals. A possible solution is to
reconstruct the original continuous-time signal by interpolating
the nonuniform samples before any other analysis step. We
propose an original method to perform the interpolation of
nonuniformly sampled random signals via a band-limited
continuous-time wavelet basis fitting. Using a windowing
technique with variable-sized intervals allows the proposed

method to take advantage of the nonuniform signal sampling.
Indeed, wavelet analysis allows the use of long time intervals
where low frequency information is relevant, and shorter regions
to extract high frequency information. A « Multiresolutional
Orthogonal Basis Interpolation (MOBI) » was proposed in [2],
only in the case of missing observations, and involved a discrete
wavelet transformation (DWT).

We are interested in the most general case of nonuniform
sampling where the observations occur at any positive real
sampling instants. Our method gives an analytical formula of the
reconstructed continuous-time signal. Consequently, the
analytical formulas of its derivatives are established. Analog
linear filtering of white Gaussian noise being the classical model
adopted to model continuous-time random signal [5], a
parametric estimation of the continuous-time ARMA model can
be performed by using analytical formulas of the reconstructed
signal and its derivatives.

Section 2 describes the principle of the reconstruction method
via band-limited continuous-time wavelet basis as well as
discusses the advantages of this method and its computational
requirements. Section 3 presents experimental results and
analyses performances of the algorithm. Finally, Section 4
summarizes our work and outline future developments.
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Wavelet series (WS) have been introduced under the form of a
signal decomposition on a basis of continuous-time orthogonal
wavelets [6].

WS coefficients are defined as sampled continuous wavelet
transform (CWT) coefficients. In a CWT, the wavelet
corresponding to scale D and time location E is [3] :
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where Ψ(W) is the mother wavelet. This wavelet can be thought of
as a bandpass function which generates a continuous family of
wavelets ΨD�E. Time W and time-scale parameters (D, E) vary
continuously :
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For WS coefficients, time is still continuous but time-scale
parameters (E, D) are sampled on a dyadic grid in the time-scale
plane (E, D). An usual definition of WS coefficients is :
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where M, N ∈ =. The wavelets are in this case :
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where M is the scaling parameter and N,�the shifting one.

The WS scheme was termed the « wavelet series transform
(WST) » in [6]. The direct transform DWST is defined by (3),
while the inverse transform, IWST{&M�N}, is defined by :
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Let us consider 1V nonuniform samples of a band-limited
continuous-time random signal [(W) sampled with a nonuniform
sampling process π = {WL | i = 0, …,� 1V-1}. The frequency
bandwidth of the signal [(W) is supposed known or an initial
guess is made using autocorrelation information. The aim is to
reconstruct [(W) by interpolating its available samples [V = {[(WL)}
while preserving the frequency content of the signal.

The principle of the proposed reconstruction method involves
application of a modified iterated DWST (3) to compute the &M�N

coefficients, and then of an IWST (5) to reconstruct the
continuous-time signal [(W). The reconstructed continuous-time
signal is called \(W).

In this algorithm, a band-limited continuous-time Morlet wavelet
is considered as mother wavelet. Morlet wavelet is obtained by
modulating a Gaussian function. The Ψ function of mother
wavelet is defined in this case by :

Ψ( ) exp( )W W M W= − +α β2 2 (6)

Figure 1 shows real and imaginary parts, and also magnitude of a
Morlet wavelet.
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)LJXUH��� Real part (black line), imaginary part (doted line) and
magnitude (gray line) of a Morlet wavelet

This algorithm neglects the analyzing wavelet contribution when
its magnitude is less than a given minimum threshold, i.e. for
time instants beyond a consequent time support of duration 7:.
Therefore, the algorithm uses the modified iterated DWST to
compute each &M�N coefficient, successively, in a least-squares
sense.

Parameters α and β defining the Ψ function of mother wavelet,
and also two supplementary parameters called τ and - must be
chosen before starting the algorithm. Parameter τ represents the
time shift interval between successive analyzing wavelets at the
first resolution level (figure 2.a.). The maximum resolution level
needed by the algorithm is called - (figure 2.b.).

The two parameters α and β are not independent but have to
satisfy the numerical condition : 5 ≤ βα-1/2

 ≤ 6 [1]. The choice of
these parameters is made in order to assure a suitable spectral
overlapping between successive resolution levels of the
analyzing wavelets (figure 2.b.). Then, - is chosen to cover the
whole frequency bandwidth of the original signal [(W). Finally, τ
is chosen to assure a good time overlapping between successive
shifted analyzing wavelets belonging to the same resolution
level. Figure 2 helps to understand the criteria for the choice of
parameters α, β, - and τ.
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)LJXUH��� D� Time overlapping between successive wavelets at
the same resolution level ; E� spectral overlapping between

successive resolution levels (α = 0.025, β = 1, τ = 2π)

Let us call 0M the shifted wavelets number necessary to cover the
whole signal [V at each resolution level M. The algorithm
computes the coefficients� &M�N associated to the scaled
(compressed) and shifted wavelets, and reconstructs the
approximated continuous-time signal \(W) and its derivatives :

�� )RU M = 0 : -1 : -(--1)    (i.e. scaled wavelet level)

�� )RU N = 0 : (0M-1)         (i.e. shifted wavelet)
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HOVH go to step 2

�� Iterate steps 1 and 2 until a given reconstruction error
threshold ε is reached : norm({[(WL)}) < ε.



�� Finally, reconstruct \(W) with (5) and establish the formulas
of all its derivatives \(O)

(W), O = 1, 2, … :
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Figure 3 shows the pyramidal structure of the described
algorithm.
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)LJXUH��� Pyramidal structure of iterated algorithm

More complicated scanning schemes have been considered to
optimize computing time and memory needs : alternate scanning
(left-right then right-left), level by level scanning (several
iterations at each resolution level) etc. The convergence speed is
different but, fortunately the final result is practically the same.
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The following discussion analyzes advantages of this
reconstruction method and its computational requirements.

Since π = {WL}  is a nonuniform sampling set, there are some
sections where signal is densely sampled and others where it is
sparsely sampled. In our algorithm, at each resolution level, only
sections containing a given minimum number of samples 1VBPLQ

are considered. Consequently, this reconstruction method does
not present the risk to introduce in the reconstructed signal \(W)
frequency components that are not actually present in the
original signal [(W).

The described method is characterized by a low computational
cost. Each wavelet coefficient is computed independently from
the others, as the best-matching solution of system (8) in a least-
squares sense. This is a consequence of considering wavelet
contribution negligible when its magnitude is less than a given
minimum threshold.

In the algorithm, equation (10) defines the residual signal {H(WL)}.
Algorithm’s convergence is guaranteed by taking into account
(equation 12) only the coefficients minimizing the energy of
residual signal at each shift step. As a consequence, the residual
error is always decreasing between two consecutive iterations.

Choosing a wavelet basis as a windowing technique with
variable-sized intervals to reconstruct a signal by interpolating
its nonuniform samples is very advantageous. In fact, frequency
resolution is high at low-frequency but at the price of a poor
time resolution due to large dilation of analyzing wavelet.
Inversely, compressing analyzing wavelet at high-frequency

increases time resolution but decreases frequency one.

In the proposed method, a Morlet wavelet basis is considered.
Generally, any band-limited continuous-time wavelet basis can
be employed.
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In our experiments we consider that continuous-time signals are
nonuniformly sampled with a Poisson sampling process.

Firstly, we consider a continuous-time random signal [(W) being
the output of an analog linear filter having I� = 0.1 Hz and I� =
0.5 Hz as resonance frequencies and the transfer function :
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when its input is a Gaussian continuous-time white noise.

Figure 4 shows an example of our method capability to perform
spectral analysis. It displays a comparison between the power
spectral densities (PSD) of the original signal [(W) and the
reconstructed signal \(W).
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)LJXUH��� PSD of the original signal [(W) (gray)
and of the reconstructed signal \(W) (black)

Secondly, we consider the case of a 6th order Butterworth
lowpass analog filter with a cutoff frequency of 0.5 Hz,
described by the transfer function :
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Figure 5 represents the residual relative error of the
reconstruction method as a function of iterations number used in
the algorithm.
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Figures 6.a.-f. shows our method capability to reconstruct the
original signal [(W) and its derivatives until the 5th order.
Sampling instants are marked with "o". It may be seen that the
reconstruction error is low for the signal and its first three
derivatives, and becomes important after the 4th one.
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We proposed a wavelet analysis method to reconstruct
continuous-time random signals when nonuniform samples are
available. An advantage of the implemented algorithm is to
perform reconstruction while preserving the frequency content of
the original signal. The pyramidal structure of the algorithm
allows to take advantage of nonuniform signal sampling by
varying frequency and time resolutions in inverse ratio. Iterating
the algorithm several times leads to a very small reconstruction
error. The algorithm is characterized by low computational cost.

Future developments of this method concern its adaptation to the
real-time reconstruction. Also, in our future work, the analytical
formulas obtained for the reconstructed continuous-time signal
and its derivatives will be used to perform a parametric
estimation of continuous-time ARMA models classically
adopted for continuous-time random signals modeling.
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