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ABSTRACT In [12], the narrowband Weyl correspondence in (3) was modi-
fied for affineprocesses using a wideband SF (WSF). It character-
izes a wideband system output as a weighted superposition of time
shifts and scale changes on the input signal, where the weight is the
WSF. However, no wideband WS was given; it is needed to yield
information on the actual TF structure of the output of a wide-
'band system. Thus, we propos@ew WS, the B-Weyl symbol

. h . PoWS), for a system that produces time shifts and scale changes.
band WS. Using the new, generalized WS, we provide a formula- Sl'he Fb\)NS is imsg)ortant as ﬁis a time-shift and scale covariant '?F

tion for the Weyl correspond(_an_ce for linear systems W'th. Instan- representation that is a natural extension of the conventional WS
taneous frequency characteristics matched to user specified char-

L . : : . to wideband processes. The inner product of tiea/Po WS with
acteristics. We also proposengw interpretation of linear sig- - o . A
. . - . the unitary Bertrand Rdistribution provides an alternative TF for-
nal transformations as weighted superpositions of non-linear fre-

guency shifts on the signal. Application examples in signal analy- mulation of the affine Weyl correspondence in [12].

: - The conventional WS and SF are no longer adequate to charac-
sis and detection demonstrate the advantages of our new results. , . . . !
terize linear systems whose nonstationary process is not matched

to simple time and frequency shifts. Thus, in this paper, we pro-

1. INTRODUCTION posenewWS as tools for analyzing systems which produce dis-

Time-frequency (TF) formulations of the conventional Weyl sym- Persive frequency shifts on the signal. These new TF WS are im-
bol (WS) and its 2-D Fourier transform (FT), the spreading func- Portant since they can be interpreted as time-varying transfer func-
tion (SF), have been successfully used in the analysis of lineartions for such systems. We derive such generalized WS by warping

conventional WS and SF are defidetespectively, as [5] for the Weyl correqundence for linear systems with ins_tantaneous
frequency characteristics matched to a specified warping. Exam-

We propose theew Py-Weyl symbol to analyze system induced
time shifts and scale changes on the input signal. This new Weyl
symbol (WS) is useful in wideband signal analysis. We also pro-
posenewWS as tools for analyzing systems which produce disper-
sive frequency shifts on the signal. We obtain these generalized
frequency-shift covariant WS by warping conventional, narrow-

_ - T T —j2rfr
WSc(t, f) = fl‘ﬁ(t + §,t - 5) e’ dr, @) ples will be given to demonstrate how the generalized WS greatly
- - . simplifies when matched to the system. We also extend these re-
_ - —Jj27tr ..
SFe(r,v) = [Ke(t+ St gle dt, ) sults by generalizing the VS to analyze systems that produce

non-linear time shifts. Analysis and detection application exam-

for an operator on L» (R) with operator kerneK'c (t, 7) [2]. The ples demonstrate the importance of these new TF techniques.

WS can be interpreted as the transfer function of a time-varying
system or as the time-varying spectrum of a random process. The 2. WIDEBAND FORMULATION OF
Weyl correspondence is the 2-D inner product of the Wigner dis- THE WEYL SYMBOL

tribution (WD)*[B] of a random process(t) and the WS oft, The affine version of the Weyl correspondence proposed in [12],
Jea) @ e = [ JWOo(t, YWSe (6 Ddedf. B [(5x)(1)X" ()df = [ [WSFs(r, ) WAF (1, a)drda, ()
This important relationship provides a definition of a TF concen- is written in terms of the wideband ambiguity function (WAF) [12]

tration measure [12], and is useful in TF detection [7, 11] and anal- and the wideband SF,

ysis [8] applications. The SF provides an important interpretation WSF;(r, o) :fmf Fg(f)\(a)e%, fA(a)e’%)/\(a)eﬂ"def, (5)
of a time-varying system output as a weighted superposition of 0

time shifts(S-z)(¢t)==z(t — ), and frequency shiftéM, z)(t)= of the operator3 whose frequency domain kernel function is
e 2 (t) on the input signak:(t), where the weight is the S T's(f,v). Here,A(a):ﬁ, and X (f)=Fi p{z(t)} is the

[12], i.e. (Lx)(t)=[[SFc(r,v)e™ ™" (M, Srx)(t)drdr. This FT of z(¢). The output of a linear system can now be interpreted
is comparable to the conventional interpretation of the (convolu- as a weighted superposition of time shifts and scale changes on the
tion) output of a linear time-invariant filter as a weighted superpo- input signal. The weights are the WSF in (5), i.e.

sition of time shifts on the input signal. The support region of the (5x)(f) = ffWSFB(T, @) Fios 1 {(Cea Sz, x)(t)} d7 dav

SF has been used to define underspread random processes [6], &, .. s /2 . .
useful concept in detection applications [7]. with time-shift 7. =7e%/?/X(a). However, the WSF provides in-

formation only on relative time lags and scale changes of a pro-
*This work was supported in part by ONR grant NO0014-96-1-0350. cess. It is desirable to have an affine WS that gives the actual TF
1Unless otherwise specified, integrals range from to co. structure of processes which cause time shifts and scale changes.




[ &) ] Weyl Symbol (WS) time-frequency representation | Spreading Function (SF) |
1tol | GWSy(t, f) = Wswgywﬁ_l t-E(), ﬁ) (generalized WS in (9)) | GSF» (¢, 3) = Sngywi_l (¢, £)in (10)

b WSc(t, f) = [Ke(t+Z,t — 2)e™>""dr (conventional WS in (1)) SFc(r,v) = [Kc(t+ 2.t — 2)e™7>"™dtin (2)
n(b) | HWSy(t, f) = WS, ywg! (t-In(£), <) (hyperbolic WS'in (7)) | HSR(¢,8) = SRy, ywi! (¢, £)in (8)
6x(®) | PWSP(t ) = WS, 1 (Ee (), 172 ) (Power WS) PSK((.5) = SRy, ot (60 2)

Eexp(b) | EWSY(t, f) = WSW&XDJ’WE; (tret/t, fe=t/t) (exponential WS) | ESK/(¢,3) = SFWgcxpyW_i (¢, ;f%)

e Lexp
Table 1: Various Weyl symbols and spreading functions for a given warping fungtign Here, ) is defined based on the domain of
£(b). For example, for the HWS is defined on’.» (R*). The warping operator igWVex)(t) =z(t,&*())/|tr (& ())[/* and

r

(WeWg ) (t) =a(t). Here, &1 (b) = In(b), £x(b) = sgn(b)|b]", Eexp(b) = e’, o(t) = L£(£), andp,(t) = L&x(L).

In this paper, we proposerewalffine WS, the p-Weyl symbol the operatof) and then transforming the TF axes. For the HSF,
(PoWS), that we define fof > 0 as the axes are simply scaled since they show only relative TF lags,
PoWSs(t, f)=F[Ts(f) %7 A -3\ j2m fta (6 not absolute TF locations.

DWSs(t, /) ff s A(a)e®, fA(a)e™ )M (@)e o © The Weyl correspondence in (3) can now be written in terms of
for a given operato3 on L:(R™). The affine Weyl correspon-  the HWS and Q(¢, f), the Altes-Marinovic Q-distribution [9],

dence in (4) can now be alternatively expressed, o . o foo
t t)dt = HWSy (t, (¢, f) dt df.
[BX)() X (f)df = [ [PoWSs(t, f) Po (t, f) dt df, Jm R0 @ = 7 JZ WS @.9) Q.0 1) deel
This newform of the Weyl correspondence may be useful in de-

in terms of the PWS and the unitary BertrandRlistribution [1], tection applications of nonstationary processes and systems with
Poy (t, /)= [ X (FA(@)e2) X" (fA@)e” 2)M@)e?®™da. hyperbolic instantaneous frequency characteristics. These formu-
The RWS is an intuitive tool for analyzing linear systems which |ations are important as they provide a new interpretation of these
produce time shifts and scale changes on the signal, and hencon.-linear system outputs as weighted superpositions of hyper-
ideal for wideband TF system analysis. The modified 2-D FT re- polic frequency shifts and scale changes on the input signal, i.e.

lation between the VS and the WSF in (5) is (Va)(t) = ffHSFy((,ﬁ) e~I™B (U 5C.c)(t) dC dB

PoWSs (¢, f) = Fros {Fu AWSFs (7, )}, .

with inverse FTF~!. Some special cases of theWWS follow. If where (Hga)(t) = 612”3111(?%@) Is the hyperbolic shift opera-

the operator output is the produ@ X )(f)=X (f)H(f), whose  torand(Caz)(t)=x(;)/la|? is the scaling operator. Thus, HSF
inverse FT corresponds to convolution, i.e. a weighted superposi-Weighs the relative importance of hyperbolic frequency shifts and
tion of time shifts operating om(t), then RWSz (¢, f)=H(f) is scale ch_anges caused by a linear system. In rows 5-7 of Table 2,
a TF transfer function dependent only on frequency. On the other We provide examples of systems/operators well-matched to con-
hand, if the operator output is a weighted superposition of scale ¢iseé HSF and HWS TF representations. For example, if the sys-
changes orX(f), i.e. (BX)(f):foooH(V)X(tfu),,‘f/ur’ >0, tem output is the scale convolution of the input signéll) and a

then the BWS is equal to the Mellin transform [1] dﬂ(}). Here, funct_long(t) (cc_JIumn 4, row 6), thgn the HWS in (7) of the oper-

t, >0 is a fixed reference time. Thus, theWS provides a con-  ator is the Mellin transform 0§ (t), i.e. HWSy(t, /)=p"’(tf)

cise, intuitive formulation of time-invariant or wideband systems. (column 2, row 6), which is intuitive as the Mellin is a natural
transform for scale operations. For comparison, the conventional

3. GENERALIZATION OF NARROWBAND WS in (1), WS, (t,f):j;]ootl/:_'/ég(tr%)e—ﬂm—fdﬂr‘ of the
WEYL CORRESPONDENCE sameoperator is difficult to interpret. In Section 5, we provide
3.1. Hyperbolic Weyl Symbol and Spreading Function applications to demonstrate the importance of the HWS.

If a system imposes hyperbolic frequency shifts and scale changes3.2. Power Weyl Symbol and Spreading Function

on the input signalnewWs andnew SF are needed for analysis. \we gbtain thexth power WS (PW&)) and thexth power SF
The TF geometry of these new WS an(_JI SF should reflect the hy'(PS#”), for an operatoty on L»(R), by warping the conven-
perbolic system changes on the input signal. Thus, for an operatorijonal WS and SF as shown in row 5 of Table 1. The relation

Y on Ly (R™) with kernel Ky (¢, 7), we define the hyperbolic WS between PWS) and PSE® is given by
and SF, respectively, as PSKY (¢, 3) = L (P {PW%”)(t o
HWSy (¢, ) =t [ Ky (te/2, te /%) e ¢ ¢ >0 (7) R A TeREIT
s t |k
whereP(") {z(t)} = [ x(t)e 7> P8I | =14t The

HSFy (¢, 8) = [ Ky (te®/? te™¢/?) e~ G0 q (8 -

(¢ 5) fo ¥ ) ® Weyl correspondence can now be expressed [4] in terms of PWS

The relation between the HWS and the HSF is given as and a power warped version of the WD [10]. The operator output
HSFy (¢, 3) = f;j}({ptHB{HWSy(t7'y/t)}} can be interpreted as a weighted superpositiortbfpower fre-

. : uency shifts on the input signal with weights P& Fi.e.
Where,])t*)B{x(t)}:fooox(t)e—]Z‘rrﬁ In %%:piflu)(ﬁ)’t>0’ isa q y lfn) p _?745 ]zﬂ-ﬁsgrtgt)‘Ll;;%
version of the Mellin transform [1]. Note the similarities between (Vz)(t) = [[PSEY (¢, B)e e il Bk (t)dCdp
the conventional WS (and SF) and the HWS (and HSF) summa-wherez . (t)=|1 — sgr(t)(|’%|'°| Low (e — sgr(t)CI%I"I%)-
rized in Table 1. Row 4 shows that the hyperbolic WS in (7) can be 5, important fact is that wher = 1, the PW$*) and PSE®)

obtained from the conventional WS in (1) by first unitarily warping simplify to the conventional WS and SFin (1) and (2), respectively.




| Cases [ WS, GWS(t,f) | Kernel, Ky (t,7) Operator output(Yz)(t) SF, GSK (¢, B) |
h(t) h(r)d(t —7) h(t)x(t) H(3/t.)
Conventional G(f) gt —1) J gt —)x(r)dr 9(t.C)o(B/t,)
[12] h()G(f) h(55)g(t = 1) Jh(5)g(t = m)a(r)dr g(t-OH(B/tr)
Vih(t) VTh(r)s(t — 7) Vih(D)a (1) P (B)5(C)
Hyperbolic ) Tg(trt) Jo Zmg(te 2)a(r)dr Vi-eSg(tre)s(8)
\/Eh(t)pgfln)(tf) h(é/g) %g(tr%) fooo h(é\//?T) /gg(trf)I(T)dT /tregg(treC)pflu)(ﬁ)
h(t) h(r) _ h(t) ()
~ gl M(g‘l(/z)éfz 0 (t)'w((t))‘ll/f({) T (/3)5(((5)(5)
Generalized ps (5h5) o 9("»)~ i 12 g(t)f(T)dT 9" (C)l)W
sres i) | 1292 e i | P92 D pgime(ndr | e e (9)

Table 2:Examples of various Weyl symbols and their corresponding kernels, operator outputs, and spreading functiorpéf)(-@)e,:
N h(t)/p(0)e 7 2™#€(7) dt is a normalized generalized transform wherét) = #££(;£) and the integration rang, q] is determined
by the domain of (b). The generalized transform simplifies to the Fourier transform wifféh= b and to the Mellin transformp ) (3),

wheng(b) = Inb. Here, = t,6 1 (6(L) — £(2)), F = toe H(EL L)) ()=, ({h(t)}, andG(f)=Fi {g(0)}.

3.3. Exponential Weyl Symbol and Spreading Function

Using the warpingtexp(b) =¢” in row 6 of Table 1, we obtain
the exponential WS (EWS) and the exponential SF (ESF)fon
L»(R). Two transforms link EW$ (¢, f) and ESK (¢, 3),

ESR(C,B) = F, L {Ems{EWSy (£, e/ /t,)}}. of thegeneralizedV'S, GWS;,

Here, &g {x(t)}=[ x(t)e=72"""" e/t dt /t.. The exponen- Jz)(®)2* (t)dt = [ [GWD. (¢, f) GWSy (¢, f) dt df.

tial Weyl correspondence uses the EWS and an exponen_tial warpeq_|ere, GWDL(¢, f) is the generalized warped version of the WD

WD [4, 10]. Operator output can be interpreted as a weighted su-[10] that depends oa(b). This generalized form of the Wey! cor-

perposition of exponential frequency shifts on the input signal, i.e. respondence may be useful in detection applications of systems
(Vz)(t)=[JESR (¢, B) e 7™ 28 s (1) de dp with arbitrary instantaneous frequency characteristics.

wherez (1) = [et/tq‘/(et/tr 3 C)]l/zx(t,, In(et/* — ¢Y). The operator output can now be interpreted as a weighted su-

perposition of dispersive frequency shifts on the input
3.4. Generalized Weyl Symbol and Spreading Function (Vz)(t) = [ [GSR(¢, B) e 7™ (DsSra)(t)dCdp  (11)

If a system imposes TF operators different from simple time or fre- where (D) (t) = ef2”ﬁ€(%;)x(t) is the generalized frequency-
quency shifts on the input signal, then new WS and SF are neededspfieq signal, and» — W7 'S, W is a generalized warped time-

for analysis to reflect the dispersive changes on the input signal. gyt operator which can be further simplified depending on the
We obtain thenewgeneralized WS (GWS) and tmewgeneral- specific warping functiore (b).

ized SF (GSF) of an operatdt representing a system whose input In rows 8-10 of Table 2, we provide some examples of sim-
signal is shifted in frequency in a non-linear manner related to a ple and intuitive GWS. In row 8, column 4, the operator in (11)
one-to-one warping functiofi(b). ThenewGWS is defined as (Va)(t) = 2(t)h(t)/+/Jo()], windows the time domain signal
fo =rer b oo by z(t). The generalized transform of this operator output intuitively
GWSy(t, f)= [ Ky (tm(f(tr ),€), tru(f(tr ), O) results in the weighted superposition of dispersive frequency shifts
. e t
G V) () }=[ h(t)x(t)e ™7™ w)  [lp(8)]dt, and the GWS
2 2 is simply the window, GW$(¢, f) = h(t)/+/|(t)|. Depending
whereZ(c, ¢) = £ 1 (e+$), € 1(€(b)) = b, andp(t) = Le(L). on the choice of(b), all the WS and SF in Section 3 and Tables
(e,€) =& (e43), &7 (£(b)) ) = &e () 1 and 2 are special cases of the GWS in (9) and GSF in (10). For

Here, Ky (t,7) _is the kernel of the operafo). The GWS pre- example, the GWS examples in rows 8-10 in Table 2 simplify to
serves generalized frequency shifts on a random proggssi.e. the conventional WS examples in rows 2-4 wiéh) = b.

j2mcé (L
y(t)=2(t)e>™ ) = GWSn, (t, /) =GWSr, (t, f — c(t)), 4. GENERALIZATION OF THE WIDEBAND
whereR, andR.. are the correlation operators pft) andz(t), Po-WEYL SYMBOL

respectively. ThaewGSF is In Section 3, we generalized the conventional WS in (1) for sys-

GSB}(C,B)Zny(tTE(C, ), trE(c, —¢)) tems that were better matched to unitarily warped time-shift and
i =(. e |—1/2 —j2mep frequency-shift operators. For wideband systems, where it may be
lP(E(e, Q)e(E(e, =O))l c de. (10) more intuitive to deal with unitarily warped time-shift and scale

The integration limits in (9) and (10) are determined by the range OPerators, we now generalize the widebandS in Section 2.

of £(b). The relation between GWSand GSF is For an operator@ representing a system whose input is time-
shifted in a non-linear manner dependent on a one-to-one function

0(b), we define the generalize@ WS as

GSR (¢, B) = F, 2 {Geos s {GWSy (t,v2(t)) } }

whereG, o {x(t)} = [ (t)e ™27 p(t)|dt is a generalized
transform dependent on the warping functigh).
The Weyl correspondence in (3) can now be expressed in terms

JR(E(ECD), )R (), —O)| 222V, (9)

2y is defined onLz([a, A]); [a, 5] depend on the domain ¢fb).



GPWSo(t, f)=[0(t- /)| [ [(©(f, ) u(©(f, —a))| 2
'FQ(G(f,OZ),@(f,—a))/\(a)ej%rﬁé‘(trf)da

= POWS,, gyt (o 00D /1) (12)

n(f)

where(Us X)(f) = X (07 (t. f)/t:)/ /100~ (t )/t /2,
O(f,a) = 071 (0(t-N)Ma)e/?)/t,, and u(f) = F0(t.f).
Here, the operato@ is defined onL.([p, q]) where[p, q] is deter-

mined by the domain df(b). Note that (12) shows the relationship
to the RWS in (6). The corresponding generalized version of the

affine SF is GWSE (¢, ) =t,WSF, o1 (£, ).

5. APPLICATION EXAMPLES

e Analysis problem: In order to demonstrate the importance of

norm. freq.

o o
w ~

norm. freq.

o
=

20 40 6

. . 60 80 100 20 40 60 80
time index

time index

100

Figure 1. (a) Weyl symbol, WS, (¢, f), and (b) hyperbolic Weyl
symbol, HW§, (¢, f), of a windowed hyperbolic processt).

6. CONCLUSION

the new generalized WS, we analyze a hyperbolic random processthe conventional WS and SF are most useful for systems produc-
ing constant time shifts and frequency shifts on the signal. The
WS are time-frequency representations that can be interpreted as
hyperbolic FM, deterministic signals. Note that each signal term time-varying spectra for random processes. In this paper, we de-
rived thenewPyWS for systems producing time shifts and scale
changes on the signal. Thus, we have extended a useful analysis
tool for narrowband systems to wideband systems. Furthermore,
using warping techniques, we generalized the conventional nar-
rowband WS and SF and the widebandA/s tonewWS and SF
better matched to dispersive systems. For example, we defined
the hyperbolic WS and SF matched to hyperbolic frequency shifts

whereE[] is the expectation operator. Figure 1 shows (a) the con- and scale changes, the power WS and SF matched to power law
frequency shifts, and the exponential WS and SF matched to ex-

show time-varying transfer functions with hyperbolic TF charac- ponential frequency shifts. We presented specialized forms of the
new WS, SF, and corresponding Weyl correspondences. We also

provided application examples in analysis and detection to demon-

in the TF plane. The disadvantage of the conventional WS is that it Strate the advantages of our new results.
produces spurious components along hyperbolae since it does not

a:(t):Zf:1 a;x;(t). Here,a; are uncorrelated, zero-mean ran-

dom weights ands;(t) = e/ (/%) ¢ > 0, 1=1,2,3, are

z;(t) has hyperbolic instantaneous frequengy;. One can show
that the hyperbolic WS in (7) of the correlation operdRy with
kernelKr, (¢,7) = E[z(¢t)z" (7)] simplifies to

> =2 B[ |oi|’] HWSw,, (¢, f)
Zj E[|a:|*] 6(f —cift), t >0

HWSr, (¢, f)

(13)

ventional WS versus (b) the HWS Bf,, of a windowedz(¢). Both

teristics. The advantage of the HWS in (13), is that it is ideally

localized along the three instantaneous frequency cufves /t

match the intrinsic hyperbolic TF characteristics.

e Detection problem: Next, we consider the detection of a known
deterministic signas(t) with hyperbolic TF characteristics in non-
stationary Gaussian random noisé). Assume that the noise

has the correlation function,Rt, 7) whose support region area

is less than unity in the hyperbolic SF domain. The test statis-

tic of the optimal likelihood ratio detector is Re R, 'z,s >}
wheré R, is the correlation operator and(t) is the received

signal. Using thenyperbolic Weyl correspondence, one obtains

Re{<R; 'z, s>} = [[HWS, 1 (t, /)Re[Q,, (¢, )} dtdf where
Q,.(t, f) is the cross Q-distribution of () and s(t). Similar to

the conventional underspread operator approximations in [6, 7],

we show that if the hyperbolic SFs of two operatdpt@andS are

confined in a small area (jointly underspread), then the hyperbolic
WS of the composite operatd’S can be approximated as the

product of the hyperbolic WS of each operator [4], i.e.
HWSys (t, f) &~ HWSy (t, f)HWSs(t, f).

For the two correlation operatoR.,, and R, ', we show that
HWSg g1 (t, /)~HWSg,, (t, f)HWSg 1 (t, f)=1. This sim-

plifies the TF test statistic for detecting a deterministic signal [7]

Re{<R;'e,s> 1~ “Re{Q.. (1, )} / HWSr, (1, f)didf.

3The support region of a hyperbolic SF, H:@F((,ﬁ), of the noise
processu(t) is the region in(¢, 3) where HSIg (g,ﬂ) #0.

“The inner product is defined ase, y>= [ z(t)y* (t)dt and Rea}
is the real part of.

(1]

(7]

(8]

El

(20]

(11]

(12]
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