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ABSTRACT

We propose thenewP0-Weyl symbol to analyze system induced
time shifts and scale changes on the input signal. This new Weyl
symbol (WS) is useful in wideband signal analysis. We also pro-
posenewWS as tools for analyzing systems which produce disper-
sive frequency shifts on the signal. We obtain these generalized,
frequency-shift covariant WS by warping conventional, narrow-
band WS. Using the new, generalized WS, we provide a formula-
tion for the Weyl correspondence for linear systems with instan-
taneous frequency characteristics matched to user specified char-
acteristics. We also propose anew interpretation of linear sig-
nal transformations as weighted superpositions of non-linear fre-
quency shifts on the signal. Application examples in signal analy-
sis and detection demonstrate the advantages of our new results.

1. INTRODUCTION

Time-frequency (TF) formulations of the conventional Weyl sym-
bol (WS) and its 2-D Fourier transform (FT), the spreading func-
tion (SF), have been successfully used in the analysis of linear
time-varying systems and nonstationary processes [5, 12, 6]. The
conventional WS and SF are defined1, respectively, as [5]

WSL(t; f) =
R
KL(t+

�

2
; t� �

2
) e�j2�f�d�; (1)

SFL(�; �) =
R
KL(t+

�

2
; t� �

2
) e�j2�t�dt; (2)

for an operatorL on L2(R) with operator kernelKL(t; �) [2]. The
WS can be interpreted as the transfer function of a time-varying
system or as the time-varying spectrum of a random process. The
Weyl correspondence is the 2-D inner product of the Wigner dis-
tribution (WD) [3] of a random processx(t) and the WS ofL,R

(Lx)(t)x�(t)dt =
R R

WDx(t; f)WSL(t; f) dt df: (3)

This important relationship provides a definition of a TF concen-
tration measure [12], and is useful in TF detection [7, 11] and anal-
ysis [8] applications. The SF provides an important interpretation
of a time-varying system output as a weighted superposition of
time shifts(S�x)(t)=x(t� � ); and frequency shifts(M�x)(t)=
ej2��tx(t) on the input signalx(t), where the weight is the SF
[12], i.e. (Lx)(t)=RR SFL(�; �)e�j���(M�S�x)(t)d�d�: This
is comparable to the conventional interpretation of the (convolu-
tion) output of a linear time-invariant filter as a weighted superpo-
sition of time shifts on the input signal. The support region of the
SF has been used to define underspread random processes [6], a
useful concept in detection applications [7].
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1Unless otherwise specified, integrals range from�1 to1:

In [12], the narrowband Weyl correspondence in (3) was modi-
fied for affineprocesses using a wideband SF (WSF). It character-
izes a wideband system output as a weighted superposition of time
shifts and scale changes on the input signal, where the weight is the
WSF. However, no wideband WS was given; it is needed to yield
information on the actual TF structure of the output of a wide-
band system. Thus, we propose anewWS, the P0-Weyl symbol
(P0WS), for a system that produces time shifts and scale changes.
The P0WS is important as it is a time-shift and scale covariant TF
representation that is a natural extension of the conventional WS
to wideband processes. The inner product of thisnewP0WS with
the unitary Bertrand P0-distribution provides an alternative TF for-
mulation of the affine Weyl correspondence in [12].

The conventional WS and SF are no longer adequate to charac-
terize linear systems whose nonstationary process is not matched
to simple time and frequency shifts. Thus, in this paper, we pro-
posenewWS as tools for analyzing systems which produce dis-
persive frequency shifts on the signal. These new TF WS are im-
portant since they can be interpreted as time-varying transfer func-
tions for such systems. We derive such generalized WS by warping
the conventional narrowband WS. We provide a TF formulation
for the Weyl correspondence for linear systems with instantaneous
frequency characteristics matched to a specified warping. Exam-
ples will be given to demonstrate how the generalized WS greatly
simplifies when matched to the system. We also extend these re-
sults by generalizing the P0WS to analyze systems that produce
non-linear time shifts. Analysis and detection application exam-
ples demonstrate the importance of these new TF techniques.

2. WIDEBAND FORMULATION OF
THE WEYL SYMBOL

The affine version of the Weyl correspondence proposed in [12],R
(BX)(f)X�(f)df=

RR
WSFB(�; �)WAF�X(�; �)d�d�; (4)

is written in terms of the wideband ambiguity function (WAF) [12]
and the wideband SF,
WSFB(�; �)=

R 1
0
f �B(f�(�)e

�
2; f�(�)e�

�
2)�(�)ej2�f�df; (5)

of the operatorB whose frequency domain kernel function is
�B(f; �). Here,�(�)= �=2

sinh�=2
, andX(f)=Ft!ffx(t)g is the

FT of x(t): The output of a linear system can now be interpreted
as a weighted superposition of time shifts and scale changes on the
input signal. The weights are the WSF in (5), i.e.
(BX)(f) =

R R
WSFB(�; �) Ft!ff(Ce�S~��x)(t)gd� d�

with time-shift ~��=�e�=2=�(�): However, the WSF provides in-
formation only on relative time lags and scale changes of a pro-
cess. It is desirable to have an affine WS that gives the actual TF
structure of processes which cause time shifts and scale changes.
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Table 1: Various Weyl symbols and spreading functions for a given warping function�(b). Here,Y is defined based on the domain of
�(b): For example, for the HWS,Y is defined onL2(R

+): The warping operator is(W�x)(t)=x(tr�
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In this paper, we propose anewaffine WS, the P0-Weyl symbol
(P0WS), that we define forf > 0 as

P0WSB(t; f)=f
R
�B(f�(�)e

�
2 ; f�(�)e�

�
2 )�(�)ej2�ft�d�; (6)

for a given operatorB on L2(R
+): The affine Weyl correspon-

dence in (4) can now be alternatively expressed,R
(BX)(f)X�(f)df =

R R
P0WSB(t; f)P0X (t; f) dt df;

in terms of the P0WS and the unitary Bertrand P0-distribution [1],
P0X (t; f)=f

R
X(f�(�)e

�
2 )X�(f�(�)e�

�
2 )�(�)ej2�tf�d�:

The P0WS is an intuitive tool for analyzing linear systems which
produce time shifts and scale changes on the signal, and hence
ideal for wideband TF system analysis. The modified 2-D FT re-
lation between the P0WS and the WSF in (5) is

P0WSB(t; f) = F�!ffF�1�!tffWSFB(�; �)gg;
with inverse FTF�1. Some special cases of the P0WS follow. If
the operator output is the product(BX)(f)=X(f)H(f); whose
inverse FT corresponds to convolution, i.e. a weighted superposi-
tion of time shifts operating onx(t), then P0WSB(t; f)=H(f) is
a TF transfer function dependent only on frequency. On the other
hand, if the operator output is a weighted superposition of scale
changes onX(f); i.e. (BX)(f)=

R1
0
H(�)X( f

tr�
) d�
�
p
tr
; f > 0,

then the P0WS is equal to the Mellin transform [1] ofH(f): Here,
tr > 0 is a fixed reference time. Thus, the P0WS provides a con-
cise, intuitive formulation of time-invariant or wideband systems.

3. GENERALIZATION OF NARROWBAND
WEYL CORRESPONDENCE

3.1. Hyperbolic Weyl Symbol and Spreading Function

If a system imposes hyperbolic frequency shifts and scale changes
on the input signal,newWS andnewSF are needed for analysis.
The TF geometry of these new WS and SF should reflect the hy-
perbolic system changes on the input signal. Thus, for an operator
Y onL2(R

+) with kernelKY(t; �), we define the hyperbolic WS
and SF, respectively, as

HWSY(t; f)= t
R 1
0
KY(te

�=2; te��=2) e�j2�tf�d�; t > 0 (7)

HSFY(�; �)=
R 1
0
KY(te

�=2; te��=2) e�j2�� ln( t
tr

)
dt: (8)

The relation between the HWS and the HSF is given as

HSFY(�; �) = F�1
!�fPt!�fHWSY(t; 
=t)gg
wherePt!�fx(t)g=

R1
0
x(t)e

�j2�� ln t
tr

dt
t
=�

(�ln)
x (�), t>0, is a

version of the Mellin transform [1]. Note the similarities between
the conventional WS (and SF) and the HWS (and HSF) summa-
rized in Table 1. Row 4 shows that the hyperbolic WS in (7) can be
obtained from the conventional WS in (1) by first unitarily warping

the operatorY and then transforming the TF axes. For the HSF,
the axes are simply scaled since they show only relative TF lags,
not absolute TF locations.

The Weyl correspondence in (3) can now be written in terms of
the HWS and Qx(t; f); the Altes-Marinovic Q-distribution [9],R 1

0
(Yx)(t)x�(t)dt =

R 1
0

R 1
�1HWSY(t; f)Qx(t; f) dt df:

This new form of the Weyl correspondence may be useful in de-
tection applications of nonstationary processes and systems with
hyperbolic instantaneous frequency characteristics. These formu-
lations are important as they provide a new interpretation of these
non-linear system outputs as weighted superpositions of hyper-
bolic frequency shifts and scale changes on the input signal, i.e.

(Yx)(t) =
R R

HSFY(�; �) e
�j��� (H�Ce�x)(t)d� d�

where(H�x)(t)= e
j2�� ln( t

tr
)
x(t) is the hyperbolic shift opera-

tor and(Cax)(t)=x( t
a
)=jaj 12 is the scaling operator. Thus, HSFY

weighs the relative importance of hyperbolic frequency shifts and
scale changes caused by a linear system. In rows 5-7 of Table 2,
we provide examples of systems/operators well-matched to con-
cise HSF and HWS TF representations. For example, if the sys-
tem output is the scale convolution of the input signalx(t) and a
functiong(t) (column 4, row 6), then the HWS in (7) of the oper-
ator is the Mellin transform ofg(t); i.e. HWSY(t; f)=�

(�ln)
g (tf)

(column 2, row 6), which is intuitive as the Mellin is a natural
transform for scale operations. For comparison, the conventional
WS in (1), WSY(t; f)=

R 1
0

p
tr

t��=2g(tr
t+�=2

t��=2)e
�j2��fd� , of the

sameoperator is difficult to interpret. In Section 5, we provide
applications to demonstrate the importance of the HWS.

3.2. Power Weyl Symbol and Spreading Function

We obtain the�th power WS (PWS(�)) and the�th power SF
(PSF(�)), for an operatorY on L2(R), by warping the conven-
tional WS and SF as shown in row 5 of Table 1. The relation
between PWS(�) and PSF(�) is given by

PSF(�)Y (�; �) = F�1
!�fP(�)
t!�fPWS(�)Y (t; 
'�(t))gg;

whereP(�)
t!�fx(t)g =

R
x(t)e�j2��sgn(t)j t

tr
j� �

tr
j t
tr
j��1dt. The

Weyl correspondence can now be expressed [4] in terms of PWS(�)

and a power warped version of the WD [10]. The operator output
can be interpreted as a weighted superposition of�th power fre-
quency shifts on the input signal with weights PSF(�)

Y , i.e.

(Yx)(t)=
RR

PSF(�)Y (�; �) e�j���ej2��sgn(t)j t
tr
j�
~x�;�(t)d� d�

where~x�;�(t)= j1� sgn(t)�j tr
t
j�j 1��2� x(tj1� sgn(t)�j tr

t
j�j 1� ).

An important fact is that when� = 1, the PWS(�) and PSF(�)

simplify to the conventional WS and SF in (1) and (2), respectively.
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Table 2:Examples of various Weyl symbols and their corresponding kernels, operator outputs, and spreading functions. Here,�
(�)
h (�) =R q

p
h(t)
p
'(t)e

�j2���( t
tr

)
dt is a normalized generalized transform where'(t) = d

dt
�( t

tr
) and the integration range[p; q] is determined

by the domain of�(b). The generalized transform simplifies to the Fourier transform when�(b) = b and to the Mellin transform,�(�ln)(�);

when�(b) = ln b: Here, t̂ = tr�
�1(�( t

tr
)� �( �

tr
)), ~t = tr�

�1(
�( t

tr
)+�( �

tr
)

2
), H(f)=Ft!ffh(t)g, andG(f)=Ft!ffg(t)g.

3.3. Exponential Weyl Symbol and Spreading Function

Using the warping�exp(b)= eb in row 6 of Table 1, we obtain
the exponential WS (EWS) and the exponential SF (ESF) forY on
L2(R): Two transforms link EWSY(t; f) and ESFY(�; �);

ESFY(�; �) = F�1
!�fEt!�fEWSY(t; 
e
t=tr=tr)gg:

Here,Et!�fx(t)g=
R
x(t)e�j2��e

t=tr
et=trdt=tr. The exponen-

tial Weyl correspondence uses the EWS and an exponential warped
WD [4, 10]. Operator output can be interpreted as a weighted su-
perposition of exponential frequency shifts on the input signal, i.e.

(Yx)(t)=
RR

ESFY(�; �) e
�j��� ej2��e

t=tr
~x�(t) d� d�

where~x�(t)=[et=tr=(et=tr � �)]1=2x(tr ln(e
t=tr � �)).

3.4. Generalized Weyl Symbol and Spreading Function

If a system imposes TF operators different from simple time or fre-
quency shifts on the input signal, then new WS and SF are needed
for analysis to reflect the dispersive changes on the input signal.
We obtain thenewgeneralized WS (GWS) and thenewgeneral-
ized SF (GSF) of an operatorY representing a system whose input
signal is shifted in frequency in a non-linear manner related to a
one-to-one warping function�(b): ThenewGWS is defined as

GWSY(t; f)=
R
KY

�
tr�(�(

t

tr
); �); tr�(�(

t

tr
);��)

�

�j'(�(�( t
tr
); �))'(�(�(

t

tr
);��))j�1=2e�j2�f�='(t)d�; (9)

where�(c; �) = ��1(c+ �
2
), ��1(�(b)) = b, and'(t) = d

dt
�( t

tr
):

Here,KY(t; � ) is the kernel of the operator2 Y: The GWS pre-
serves generalized frequency shifts on a random processx(t), i.e.

y(t)=x(t)ej2�c�(
t
tr

))GWSRy (t; f)=GWSRx(t; f � c'(t));

whereRy andRx are the correlation operators ofy(t) andx(t),
respectively. ThenewGSF is

GSFY(�; �)=
R
KY(tr�(c; �); tr�(c;��))
�j'(�(c; �))'(�(c;��))j�1=2e�j2�c�dc: (10)

The integration limits in (9) and (10) are determined by the range
of �(b). The relation between GWSY and GSFY is

2Y is defined onL2([�; �]); [�; �] depend on the domain of�(b):

GSFY(�; �) = F�1
!�fGt!�fGWSY(t; 
'(t))gg
whereGt!cfx(t)g=

R
x(t)e�j2�c�(

t
tr

)j'(t)jdt is a generalized
transform dependent on the warping function�(b).

The Weyl correspondence in (3) can now be expressed in terms
of thegeneralizedWS, GWSY ;R

(Yx)(t)x�(t)dt =
R R

GWDx(t; f)GWSY(t; f) dt df:

Here, GWDx(t; f) is the generalized warped version of the WD
[10] that depends on�(b). This generalized form of the Weyl cor-
respondence may be useful in detection applications of systems
with arbitrary instantaneous frequency characteristics.

The operator output can now be interpreted as a weighted su-
perposition of dispersive frequency shifts on the input

(Yx)(t) =
R R

GSFY(�; �) e
�j��� (D�

~S�x)(t)d� d� (11)

where(D�x)(t) = ej2���(
t
tr

)x(t) is the generalized frequency-
shifted signal, and~S� =W�1

� S�W� is a generalized warped time-
shift operator which can be further simplified depending on the
specific warping function,�(b).

In rows 8-10 of Table 2, we provide some examples of sim-
ple and intuitive GWS. In row 8, column 4, the operator in (11),
(Yx)(t) = x(t)h(t)=

pj'(t)j, windows the time domain signal
x(t). The generalized transform of this operator output intuitively
results in the weighted superposition of dispersive frequency shifts

Gt!cf(Yx)(t)g=
R
h(t)x(t)e�j2�c�(

t
tr

)
pj'(t)jdt, and the GWS

is simply the window, GWSY(t; f) = h(t)=
pj'(t)j. Depending

on the choice of�(b), all the WS and SF in Section 3 and Tables
1 and 2 are special cases of the GWS in (9) and GSF in (10). For
example, the GWS examples in rows 8-10 in Table 2 simplify to
the conventional WS examples in rows 2-4 when�(b) = b:

4. GENERALIZATION OF THE WIDEBAND
P0-WEYL SYMBOL

In Section 3, we generalized the conventional WS in (1) for sys-
tems that were better matched to unitarily warped time-shift and
frequency-shift operators. For wideband systems, where it may be
more intuitive to deal with unitarily warped time-shift and scale
operators, we now generalize the wideband P0WS in Section 2.
For an operatorQ representing a system whose input is time-
shifted in a non-linear manner dependent on a one-to-one function
�(b); we define the generalized P0WS as



GP0WSQ(t; f)= j�(trf)j
R
j�(�(f; �))�(�(f;��))j� 1

2

��Q(�(f; �);�(f;��))�(�)ej2� t�
�(f)

�(trf)d�

= P0WSU�QU�1
�

(
trt

�(f)
; �(trf)=tr) (12)

where(U�X)(f) = X(��1(trf)=tr)=
pj�(��1(trf)=tr)j=tr,

�(f; �) = ��1(�(trf)�(�)e�=2)=tr, and �(f) = d
df
�(trf):

Here, the operatorQ is defined onL2([p; q]) where[p; q] is deter-
mined by the domain of�(b):Note that (12) shows the relationship
to the P0WS in (6). The corresponding generalized version of the
affine SF is GWSFQ(�; �)= trWSFU�QU�1

�
(tr�; �):

5. APPLICATION EXAMPLES

� Analysis problem: In order to demonstrate the importance of
the new generalized WS, we analyze a hyperbolic random process
x(t)=

P3
i=1 �ixi(t). Here,�i are uncorrelated, zero-mean ran-

dom weights andxi(t) = ej2�ci ln (t=tr), t > 0, i=1; 2; 3, are
hyperbolic FM, deterministic signals. Note that each signal term
xi(t) has hyperbolic instantaneous frequency,ci=t. One can show
that the hyperbolic WS in (7) of the correlation operatorRx with
kernelKRx(t; � ) = E[x(t)x

�(� ) ] simplifies to

HWSRx(t; f) =
P

3

1
E[ j�ij2] HWSRxi (t; f)

=
P

3

1
E[ j�ij2] �(f � ci=t) ; t > 0 (13)

whereE[�] is the expectation operator. Figure 1 shows (a) the con-
ventional WS versus (b) the HWS ofRx of a windowedx(t). Both
show time-varying transfer functions with hyperbolic TF charac-
teristics. The advantage of the HWS in (13), is that it is ideally
localized along the three instantaneous frequency curvesf=ci=t
in the TF plane. The disadvantage of the conventional WS is that it
produces spurious components along hyperbolae since it does not
match the intrinsic hyperbolic TF characteristics.

�Detection problem: Next, we consider the detection of a known
deterministic signals(t)with hyperbolic TF characteristics in non-
stationary Gaussian random noisen(t). Assume that the noise
has the correlation function Rn(t; �) whose support region area3

is less than unity in the hyperbolic SF domain. The test statis-
tic of the optimal likelihood ratio detector is Ref< R�1n x; s >g
where4 Rn is the correlation operator andx(t) is the received
signal. Using thehyperbolicWeyl correspondence, one obtains
Ref<R�1n x; s>g=RRHWS

R
�1
n

(t; f)RefQxs(t; f)gdtdf where
Qxs(t; f) is the cross Q-distribution ofx(t) ands(t): Similar to
the conventional underspread operator approximations in [6, 7],
we show that if the hyperbolic SFs of two operatorsY andS are
confined in a small area (jointly underspread), then the hyperbolic
WS of the composite operatorYS can be approximated as the
product of the hyperbolic WS of each operator [4], i.e.

HWSYS(t; f) � HWSY(t; f)HWSS(t; f):

For the two correlation operatorsRn andR�1n ; we show that
HWS

RnR
�1
n

(t; f)�HWSRn(t; f)HWS
R
�1
n

(t; f)�1: This sim-
plifies the TF test statistic for detecting a deterministic signal [7]

Ref<R�1n x; s>g�
R 1
0

R 1
�1RefQxs(t; f)g

�
HWSRn(t; f)dtdf:

3The support region of a hyperbolic SF, HSFRn
(�; �); of the noise

processn(t) is the region in(�; �) where HSFRn
(�; �) 6= 0.

4The inner product is defined as<x; y>=
R
x(t)y�(t)dt and Refag

is the real part ofa.
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Figure 1. (a) Weyl symbol, WSRx(t; f), and (b) hyperbolic Weyl
symbol, HWSRx(t; f), of a windowed hyperbolic processx(t).

6. CONCLUSION

The conventional WS and SF are most useful for systems produc-
ing constant time shifts and frequency shifts on the signal. The
WS are time-frequency representations that can be interpreted as
time-varying spectra for random processes. In this paper, we de-
rived thenewP0WS for systems producing time shifts and scale
changes on the signal. Thus, we have extended a useful analysis
tool for narrowband systems to wideband systems. Furthermore,
using warping techniques, we generalized the conventional nar-
rowband WS and SF and the wideband P0WS tonewWS and SF
better matched to dispersive systems. For example, we defined
the hyperbolic WS and SF matched to hyperbolic frequency shifts
and scale changes, the power WS and SF matched to power law
frequency shifts, and the exponential WS and SF matched to ex-
ponential frequency shifts. We presented specialized forms of the
new WS, SF, and corresponding Weyl correspondences. We also
provided application examples in analysis and detection to demon-
strate the advantages of our new results.
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