
ABSTRACT

We address the theoretical and practical issues involved in ASR
when some of the observation data for the target signal is masked
by other signals. Techniques discussed range from simple missing
data imputation to Bayesian optimal classification. We have
developed the Bayesian approach because this allows prior
knowledge to be incorporated naturally into the recognition
process, thereby permitting us to go beyond the simple “integrate
over missing data” or “marginals” approach reported elsewhere,
which we show to be inadequate for dealing with realistic patterns
of missing data. After deriving general techniques for recognition
with missing data, these techniques are formulated in the context
of an HMM based CSR system. This scheme is evaluated under
both random and more realistic patterns of missing data, with
speech from the DARPA RM corpus and noise from NOISEX. We
find that a key problem in real world recognition with missing data
is that efficient ASR requires data vector components to be
independent, and incomplete data cannot be orthogonalised in the
usual way by projection. We show that use of spectral peaks only
can provide an effective solution to this problem.

1. INTRODUCTION
Our motivation for studying the “missing data” (MD) problem
derives from ongoing studies at Sheffield and elsewhere on source
separation by computational auditory scene analysis (CASA).
CASA based separation prior to recognition is an attractive
paradigm for robust ASR because it makes no assumptions about
source type (as does parallel model combination) or number (as
does blind separation). However, the potential for MD techniques
in ASR does not stand or fall with CASA based separation. In the
case of unstructured and near stationary noise there are alternative
means for local snr estimation [10], while in some applications,
such as band limited or multi-stream ASR [4], the deletion pattern
is imposed a priori. In each case this approach requires a solution
to the MD problem. This paper is a summary of a larger TR [8].

A number of recent studies have examined the MD problem
[1,7,8,11,13]. A method is presented in [1] for MD with stationary
noise, and a general maximum likelihood framework for both
training and recognition with MD is presented in [7]. However,
these methods are not Bayesian, and do not address practical
implementation issues.

2. CLASSIFICATION WITH MISSING DATA
In recognition with missing data we are confronted with the
problem that whereas with complete data the optimal class
decision  given data vector  is1 
(see derivation of Eq.14 in section 3), with MD  cannot
be directly evaluated because  does not have an exact value.

d x( ) x C° argmaxCP C x( )=
P C x( )
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Instead both  and  must be modelled as random
variables, with pdfs rather than exact values.

We assume that some prior process has partitioned each data
vector  into present and missing (or certain and uncertain) parts,

. The missing part is modelled as a random variable,
whose observed values, if available at all, are uncertain and
denoted . Let  denote all knowledge about , including ,

, and any other available information, such as a noise model.

2.1 Missing Data Imputation
The simplest approach to recognition with missing data is to
estimate  from its posterior pdf , where the prior pdf for

 is estimated from the training set. We can then proceed as with
complete data, i.e. take the class decision:

We can obtain various estimates for  from , such as its
mean, median or mode. Of these the mean is the most accurate in
that it has the minimum expected quadratic error:

2.2 Class Probability Imputation
We can also try to estimate a value for the random variable

 directly. While the pdf for  will in general be
impractical to obtain, its expected value can be obtained in closed
form without reference to its pdf because if  and

, then:

This gives us class probability conditional mean value imputation:

where

2.2.1 Certain-Uncertain Factorisation
Factorising 

In the case when the classifier provides models f(x|C) for each
class, and  only (  is not used), the denominator in Eq.6
cancels and the pdf integrates to 1, giving:

This is the widely reported “marginal” technique [1,7,8,11,13].

1. P(x) is “probability of x” & f(x) is the “probability density at x”.
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2.2.2 Adapting a Classifier to Operate with Missing Data
For any classifier whose outputs approximate a posteriori class
probabilities, yi(x) = P(Ci|x), the new output which is required to
operate with MD xm under constraints κ is:

When f(xm|κ) and the above integral can be evaluated in closed
form it is straightforward to adapt the classifier to operate with
missing and uncertain data. As well as the HMM system described
in section 4.1, this is also true of the RBF network described in [1]. 

3. BAYESIAN OPTIMAL CLASSIFICATION
The Bayesian approach [3] to deriving an optimum class
decision  for given data  is to first specify a loss function,

, for every true class  and decided class ,
and then minimise the overall expected loss or Bayes risk,

, with respect to this loss function and the posterior
pdf, . In simple all or nothing classification, correct
classification is usually assigned loss 0 and incorrect classification
loss 1 (known as “zero-one loss”). The “Bayes risk” is the
expected loss over all C and all x:

When  selects correct class , then with zero-one loss:

This shows that with complete data the Bayes risk is simply the
probability of misclassification, and this is minimised by the
commonly used rule of maximising , i.e.:

whereas with missing data the Bayes risk is given by:

which is minimised by the Bayes decision:

This shows us that the class probability mean value imputation
technique, previously derived in section 2.2 (Eq.4) by another
argument, is in fact Bayesian optimal (with respect to zero-one
loss). We now have a theoretical basis for optimal recognition with
missing and uncertain data.

4. HMM BASED CSR WITH MISSING DATA

4.1 Derivation of MD Adapted Recognition Formulae
CSR is presently dominated by HMM based systems and we have
therefore focused on MD techniques as required within this
framework. The continuous density HMM system [14,15] consists
of an HMM model for each of a given set of speech units, with
optional simple grammar model (word-word transition
probabilities). The HMM model consists of a fixed number of
hidden emitting states, each of which is modelled as a Gaussian
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mixture (GM) pdf (Eqs.27,28) and transition probabilities,
, between each of these states. Speech units may be

words or subword units such as monophones, diphones, or
triphones. It does not concern us how the parameters for these
models are estimated, because our interest here is in recognition
with MD by systems trained on complete data only.

In recognition we must select the optimal state sequence
 given data matrix .

Under the usual simplifying assumptions of data independence
between frames and Markovian dependence between states, for
complete data the sequence probability is given by:

In the case of the knowledge  which concerns us here (Eq.23),

and the same independence assumptions give the latter as:

Therefore, during the Viterbi recognition procedure with MD, for
data frame  we must evaluate for each (active) state :

where:

Besides the present data, which gives us certain values, further
contributions to our knowledge  of   include the following:

• the additivity of energy from different sound sources tells us
that the uncertain data provides upper bounds for each of the
missing components

• our preprocessing procedure ensures that missing values are
bounded below by zero.

This gives us 

and

If MD bounds are not used, or  is zero, the integrals in Eq.25
cancel out. Otherwise the denominator above can be ignored
because it is independent of choice of state, so that:

4.2 Implementation Issues

4.2.1 Properties of the Gaussian Mixture PDF
Each HMM state is modelled as a Gaussian mixture pdf:

This pdf is semiparametric (it can fit any pdf when given enough
mixture components) and self conjugate (its posterior pdf is of the
same family). Each mix component:
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is specified by its mean vector  and covariance matrix . Let the
present and missing components of  and  corresponding to

 be separated as:

then the marginal pdf of a GM is given by:

and the conditional pdf by:

The product of GMs is GM. The quotient of a GM with a Gaussian
is GM. The product of the marginal with the integral of the
conditional (Eq.26) now takes on a simple form:

4.2.2 Evaluation of the Multivariate Gaussian Integral
Evaluation of the multivariate Gaussian integral in Eq.35 in closed
form requires a change of variable which results in a diagonal
covariance matrix. This can be achieved either:

1. exactly, by projecting  onto ’s principal components
2. approximately, using a fixed discrete cosine transform
3. crudely, by simply treating all off diagonal values as zero

Option 3 gives unacceptably low performance. Options 1 or 2 can
be applied using the following result [12]:

This still leaves a trapezoidal area of integration which must be
approximated by a bounding rectangle. Most of the area of a high
dimensional rectangle is close to its vertices [3], so this still leaves
scope for inaccuracy. If this were not so the high cost of evaluating
the MD conditional pdf in Eq.26 for every state for each data
frame could be eliminated entirely, by forcing all values to have
non zero uncertainty.

Univariate standard Gaussian pdf and cdf values (  and
 respectively) are typically so small that we must work with

logarithms. When ,  can be obtained
using the C-standard erf() and log() functions. Otherwise logΦ(x)
must be calculated directly, approximating  by 
for  and  for  [6]. 

5. EXPERIMENTATION WITH RM AND NOISEX
Our speech data is from the DARPA RM 1000 word speaker
independent CSR corpus [15]. All 2880 sentences in the trn109 set
are used for training; recognition tests uses every 1 in 5 sentences
from the 500 sentence feb89 test set. HMM configuration and
training follow the “RM Recipe” in [15]. This is a multi-stage
procedure which starts with 1-mix monophone models and
progresses through to 5-mix state-clustered triphones.

For Fig.1 and results i-iv in Fig.2 speech data is parametrised
as a 16 channel mel scaled FFT filterbank (fbank16).
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5.1 Clean Speech with Random Deletion
Our initial tests used uniform random deletions over frequency
and time, and data without noise. Models used at this stage were
1-mix monophones with full covariance. The data pdf was
estimated as Gaussian, . Figure 1 shows performance1

against proportion of data deleted, for MD imputation techniques
using increasing amounts of prior information (Eqs.1,2):

1.  (zero imputation)
2.  (mean imputation)
3.  (conditional mean imputation)

and for class probability imputation, with  (marginals):
4.  (Eqs.4,7,30)

The characteristics shown in Fig.1 agree with those reported in
[1,7,8,11], where the marginals technique holds out well with up
to 60% random deletion.

5.2 S/N Mixture with Local SNR Based Deletion
As spectro-temporally neigbouring data is highly correlated, the
information overlap in a data sample is less the more uniformly
this data is distributed. At a given deletion rate random deletion
will therefore preserve considerably more information than the
clustered time-frequency deletions which are more likely to occur
in reality. For this reason we have also tested MD techniques using
local snr based deletion, whereby values in a s/n mixture are
deleted when the a priori local snr is below a given threshold.
Under these conditions the 61% accuracy for marginals at 40%
random deletion in Fig.1 falls to 32% for the same deletion rate.

In Fig.2 we are working with a s/n mixture at 18 dB global
snr. Here 1-mix marginals accuracy falls to 28%. In the final stage
of the RM Recipe (which reaches 95% absolute word accuracy
when trained from a flat start) state models use 5-mix GMs,
speech units are (state clustered) triphones, and data vectors have
first and second difference components appended. Computational
cost completely precludes the use of full covariance at this stage.

With complete data this problem is overcome by
approximately orthogonalising the data vector using the DCT (or
PCA). This has the effect that every data covariance matrix
becomes approximately diagonal, thereby reducing the storage
required for each covariance matrix from n2 to n, and floating
point operations involved in covariance matrix arithmetic from

 to , or, in the case of matrix inversion, from  to .

1. The “%word accuracy” usually quoted is 100.(H-I)/(H+S+D). Here we
have used 100.H/(H+S+D+I), because this is a true percentage [10].
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Figure 1: ASR performance on clean data with random
deletions over frequency and time, for three data imputation
methods and for marginals Bayesian estimation. 
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As combining a known with an unknown value results in an
unknown value, neither of the linear preprocessing operations of
data orthogonalisation or time differencing, frequently carried out
during conventional ASR, are possible with MD. Result iii  in
Fig.2 shows that the disadvantage of going from full to diagonal
covariance without orthogonalisation is more than offset by the
advantage of using triphones and difference coefficients.

5.3 Peaks Selection for Data Orthogonalisation
The only way a filterbank vector can be rendered orthogonal
without projection is to select a subsample of points none of which
are close neighbours. Spectral peaks are good candidates for this
purpose [2] because they are usually well spaced, they are
relatively unlikely to be dominated by noise, and formant centres
are highly correlated with phoneme identity. Result iv shows that
the additional peaks selection criterion does not give much
advantage with the fbank16 data representation, in which peaks
are very sparse. Results vi-vii in Fig.2 show that the advantage of
peaks filtering is much more pronounced with the data
representation from a 64 channel auditory nerve firing rate model
[5] (rate64), while result v confirms that the degree of redundancy
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experiment number

n params model method marg bounds 

i fbank16 1-mix marginals snr not snr

ii fbank16 1-mix marg+b snr not snr

iii fbank16 5-mix marg+b snr not snr

iv fbank16 5-mix marg+b pk & snr not snr

v rate64 5-mix marg+b snr not snr

vi rate64 5-mix marg+b pk & snr not snr

vii rate64 5-mix marg+b pk & snr pk & not snr

Figure 2: shows performance of various strategies for the
recognition of RM data mixed with helicopter noise from
NOISEX, at 18 dB global snr. The table specifies the details of
each experiment: parameterisation, model type, missing data
method, and rules for inclusion of each value into the marginals
or bounds factors (Eqs.6,26,35). Abbreviations: “1-mix” =
“1-mix monophones, with full covariance”, “5-mix” = “5-mix
state-clustered triphones, with diagonal covariance and
appended 1st and 2nd difference coefficients”, “b” = “bounds”,
“snr” = “local snr > 18 dB”, “pk” = “is spectral peak”.

in high resolution representations can lead to a fall in performance
when this redundancy is not exploited.

6. DISCUSSION
We have developed a Bayesian framework for classification with
missing data.We have demonstrated that this can be applied to
HMM based ASR with spectral data in which noise corrupted
values have been tagged. In so doing it was noted that normal
orthogonalisation techniques are not applicable with missing data
and this problem was partly overcome using a high resolution
spectral data representation from which only peaks were retained.
Performance could possibly be improved by expanding the data
vector to span a number of time frames, thereby exploiting
temporal data correlation. 
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