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ABSTRACT

Fast algorithms based on the matrix sign function are
developed to estimate the signal and noise subspaces of
the sample correlation matrices. These subspaces are
then utilized to develop high resolution methods such
as MUSIC and ESPRIT for sinusoidal frequency and
direction of arrival (DOA) problems. The main feature
of these algorithms is that they generate subspaces that
are parameterized by the signal-to-noise ratio (SNR).
Signi�cant computational saving will be obtained due
to the fast convergence of these higher order iterations
and to the fact that subspaces rather than individual
eigenvectors are actually computed. Simulations show-
ing the performance of these methods were also pre-
sented.

1. INTRODUCTION

In most applications of subspace methods in sinusoidal
and direction of arrival estimation problems, the signal
or noise subspace is required rather than the individual
eigenvectors to derive high resolution methods such as
MUSIC and ESPRIT. These subspaces are tradition-
ally computed using eigendecomposition or (singular
value decomposition) of the covariance matrix of the
data. Both of these techniques require explicit compu-
tations of eigen (singular) vectors and eigen (singular)
values. A considerable computational e�ort can be
achieved if these subspaces are computed without the
need to compute the associated eigenvalues or eigen-
vectors. In this paper we propose e�cient subspace
separation methods which can be implemented using
matrix sign function algorithms. The most salient fea-
tures of these algorithms are that they are globally
convergent in that they converge from almost any ini-
tial condition (in the sense of probability one). Second,
a technique is available which generates rth order al-
gorithms for any r � 2. They are also self correcting
in that any mistake in one step of the computations

will be corrected in the subsequent steps. All these
features combined together provide a close to ideal al-
gorithms for subspace computation. In this paper we
show that the matrix sign function provides a good
tool for deriving such algorithms.
The matrix sign function is a special case of the ma-

trix sector function and is thoroughly studied in the
literature. The matrix sign function has a wide range
of applications in approximation and computational
methods, control theory, eigendecomposition and spec-
tral theory. It is also used in the computations of roots
of matrices and sector functions [1]-[2] and [4]-[5]. In
[12] the matrix sign function was utilized for the sepa-
ration of eigenvalues in speci�c regions in the complex
plane such as squares and rectangles. A comprehensive
presentation of the history of the matrix sign function
including its applications and computation in the last
two decades is given in [7]-[10].
Let A 2 Cm�m be diagonalizable nonsingu-

lar matrix having no negative eigenvalue such
that P�1AP = diag(�1; � � � ; �m), then the ma-
trix sign function is de�ned as S = sign(A) =
P�1diag(sign(�1); � � � ; sign(�m))P , where for any z =
x+ iy 2 C with x 6= 0,

sign(z) = sign(x+ iy) = sgn(x) (1a)

sgn(x) =
n
1 if x > 0;
�1 if x < 0.

(1b)

Note that S2 = I and SA = AS. Thus the sign func-
tion algorithm will map eigenvalues with positive real
parts to 1 and those with negative real parts to -1.
Note that sign(A) is not de�ned when A is singular.

2. MATRIX SIGN FUNCTION

METHOD

In this section we develop fast and e�cient algorithms
for computing the matrix sign function of complex ma-
trices. To derive higher order �xed point iteration for
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computing the matrix sign functions let Cr(Y ) and
Dr(Y ) be polynomial matrices de�ned as

Cr(Y ) =

[ r
2
]X

l=0

�
r

2l

�
Y r�2l (2a)

Dr(Y ) =

[ r
2
]X

l=0

�
r

2l+ 1

�
Y r�2l�1; (2b)

where [ r2 ] is the largest integer less than or equal to r
2 .

For each positive integer r we de�ne �r(Y ) =
Dr(Y )

�1Cr(Y ). When r = 2, this reduces to the
standard Newton method where C2(Y ) = Y 2 + I and
D2(Y ) = 2Y and hence �2(Y ) = (2Y )�1(Y 2 + I). In
the next result some properties of �r are presented.

Theorem 1. Let A and S be nonsingular matrices
and let S be the matrix sign function of A. Let Cr

and Dr be as de�ned in (2) for r � 2. Let �1(Y ) = Y ,
then for r > 1, �r can recursively be generated as
follows

�r(Y ) = f�r�1(Y ) + Y g�1fY �r�1(Y ) + Img; (3a)

and for 1 � l < r,

�r(Y ) = f�r�l(Y ) + �l(Y )g
�1f�l(Y )�r�l(Y ) + Img:

(3b)
Moreover, �r satisfy the following

(i) �r(Y ) = f(Y + S)r � (Y � S)rg�1f(Y + S)r +
(Y � S)rgS:

(ii) �r(Y ) = S + (2S)�r+1(Y � S)r +O(Y � S)r+1:

(iii) �2r(Y ) = (2�r(Y ))
�1(�2

r(Y ) + Im):

(iv) �nr(Y ) = fDn(�r(Y )g
�1fCn(�r(Y ))g:

(v) �r(�s(Y )) = �s(�r(Y )) = �rs(Y ):

(vi) �r2(Y ) = �r(�r(Y )):

(vii) �rl(Y ) = �r(�r(� � � (�r(Y ))).

(viii) �r satisfy the following initial value problem
d
dY

�r(Y ) = rf(Y � S)(Y + S)g�1f(�r(Y ) �
S)(�r(Y ) + S)g with �r(S) = S:

Additionally, �r(Y ) is odd for all positive integers r �
1.

Proof. See [3].

The notation O(x) means that O(x)
x

remains bounded
near x = 0. Using this theorem we will generate a �xed
point function of order r � 2 which will be used later
to compute the matrix sign function of a nonsingular
matrix which is the utilized to compute the signal and
noise subspaces. Based on the last theorem, one may
develop the following algorithm.

Algorithm 1

(i) Set Y0 = A and choose r � 2

For k = 1 : N

(ii) Cr(Yk) =
P[ r

2
]

l=0

�
r
2l

�
Y r�2l
k

(iii) Dr(Yk) =
P[ r

2
]

l=0

�
r

2l+1

�
Y r�2l�1
k

(iv) Yk+1 = Dr(Yk)
�1Cr(Yk)

It can be shown from Theorem 1 that the error for-
mula for the above algorithm has the form

(Yk+1 � S)(Yk+1 + S)�1 = f(Yk � S)(Yk + S)�1gr:

As can easily be seen from this error formula, the con-
vergence of Algorithm 1 is rth order. Also it was ob-
seved from several simulations that for most practical
applications N = 3 or 4 is su�cient to achieve conver-
gence to the matrix sign function.

3. APPLICATIONS TO

SINUSOIDAL AND DOA

PROBLEMS

The sinusoidal frequency and DOA estimation prob-
lems are of interest in many applications in radar,
sonar, and seismology. Several approaches have been
developed over the years and among the well-known
approaches to this problem are the matrix pencils and
subspace methods [6] and [12]-[14]. The DOA prob-
lem can be formulated as follows. Consider a linear
array of p sensors and q multiple narrow-band signals
impinging on the array with DOA angles �1; �2; � � � ; �q .
Assuming that p snapshots are available, the received
signal at the array can be expressed as

x(k) = A(�)s(k) + v(k); (4a)

where s(k) 2 Cq (C is the �eld of complex numbers) is
a vector of complex signals of q wavefronts

s(k) = [ s1(k) s2(k) � � � sq(k) ]
T
; (4b)

v(k) is a p� 1 vector of additive noise in sensors with

v(k) = [ v1(k) v2(k) � � � vp(k) ]
T
; (4c)

and A is p� q matrix

A(�) = [ a(�1) a(�2) � � � a(�q) ] ; (4d)

with a(�) = [ 1 ejw(�) ej2w(�) � � � ej(p�1)w(�) ]
T

being the steering vector of the array toward the di-
rection �. Here w(�) is some known function which
is solvable for �. It is also assumed that the signals



and additive noise are zero-mean stationary complex-
valued random processes such that E[vi(k)v

�

j (k)] =

�2v�i�j for i = 1; � � � ; q, where �2v is the variance of v.
Here E[:] and � denote the expectation, and conjugate
transpose operators, respectively. Thus, the spatial
p � p covariance matrix of the array output is given
by Rx := E[x(k)x�(k)] = A(�)RsA(�)

� + �2vIp with
Rs = E[s(k)s�(k)] is q � q covariance matrix of s and
Ip is the p�p identity matrix. Note that the minimum
eigenvalue of Rx is equal to �2v with multiplicity p� q.
The frequency estimation problem can be posed as

the determination of a set of complex sinusoids from
the measured output x(k) in the presence of measure-
ment noise, i.e.,

x(k) = s(k) + v(k); (5a)

where

s(k) =

qX
i=1

Aie
�j2�kfi ; (5b)

and the noise process v(k) is assumed to be indepen-
dent of x(k), Ai, and fi are the amplitude, and fre-
quency of the ith complex sinusoid, respectively.
The methods discussed in this paper will handle

both types of problems, the DOA in (4) and sinusoidal
frequency estimation (5).

Let R̂x be the sample covariance matrix of x(k) and

assume that the eigenvalues of R̂x are sorted in de-
creasing order so that �1 � �2 � � � � �q > �q+1 = � � � =
�p = �2v with corresponding eigenvectors fuig

p
i=1. The

eigenvectors fuig
q
i=1 are usually called the signal vec-

tors which span the signal subspace with projection
UsU

�

s =
Pq

i=1 uiu
�

i and the eigenvectors fuig
p
i=q+1 are

called the noise vectors which span the noise subspace
with projection UnU

�

n =
Pp

i=q+1 uiu
�

i . When the

noise v(k) is white process, A(�)RsA
�(�) = Us�

2U�s ;

where � = diag(�1; �2; � � � ; �q) and hence A(�)R
1

2

s =
Us�V for some orthogonal matrix V . Therefore,

U�nA(�)R
1

2

s = U�nUs�V = 0 from which it follows
U�nA(�i) = 0 or equivalently fuig

p
i=q+1 are orthogo-

nal to fa(�i)g
q
i=1. The signal subspace is spanned by

fa(�i)g
q
i=1 and thus the last relation simply means that

the vectors fuig
p
i=q+1 span the noise subspace.

Since R̂x is positive de�nite, all its eigenvalues are
non-negative and thus the matrix sign function of R̂x

is Ip. In this case we have to use a shifted version of

the sign function algorithm. Let ~Rx = R̂x��tr(R̂x)Ip.
The number � is empirical and is dependent on appli-
cations and signal-to-noise ratio (SNR). In our simu-
lations we used 0 � � � 0:2. This implies that the
pure signal energy is 80% of the total energy. Thus
the matrix sign algorithm maps the matrix R̂x into
U = Us � Un with Us + Un = I . Therefore Us =

I+U
2

and Un = I�U
2 . Here Us are orthogonal matrices

whose columns are the eigenvectors corresponding to
the positive and negative eigenvalues of ~Rx, respec-
tively. Once the signal and noise subspaces are esti-
mated, high resolution methods such as MUSIC, ES-
PRIT, or Root-MUSIC can be used to determine the
frequencies.

4. SIMULATIONS

Several data sets were generated using the equation

x(k) = A1e
�j2�f1k +A2e

�j2�f2k + v(k); (6)

where A1 = 1:0, A2 = 1:0, f1 = 0:5, f2 = 0:52 and
k = 1; 2; � � � ; 25. Note that f2 � f1 = :02 which is
less than 1

25 = 0:04, the Fourier frequency. The SNR

for either sinusoids is de�ned as 10 log10(
�2
s

�2
v

), where

s(k) = A1e
�j2�f1k + A2e

�j2�f2n and �2s , �
2
v are the

variances of s(k) and v(k), respectively. The additive
noise was colored and generated by passing a complex
white Gaussian process of unit variance through an
FIR �lter with impulse response f1; 1; 1g. The size of
each matrix was chosen to be p=15 which in the pres-
ence of Gaussian noise has e�ective rank two. The
matrix sign function algorithm based on Theorem 1
with r = 2 was used for the computation of the signal
subspace and noise subspaces. Figures 1 and 2 display
the peaks for SNR=5, 0 dB using the covariance ma-
trix of size p = 15 and � = 0:2. One can see from
these �gures that a fairly accurate results can be ob-
tained even for very close sinusoids at low SNR and
the presence of colored noise.

5. CONCLUSION

The purpose of this article has been to develop several
robust and numerically e�cient methods for the com-
putation of the principal subspaces required in deriving
high resolution methods for sinusoidal frequency and
direction of arrival estimation problems. These prin-
cipal subspaces were derived using higher order itera-
tions for computing the matrix sign function of com-
plex matrices. Speci�cally, given any positive integer
r � 2, we presented a systematic way of deriving rth
order convergent algorithms. For r = 2, and r = 3,
the techniques of this paper become the Newton' and
Halley's methods respectively for solving the equations
S2 = I and SA = AS.

References

[1] Blazer L. A., "Accelerated Convergence of the Ma-
trix Sign Function Method of Solving Lyapunov,
Riccati and Other Equations," Int. J. Control, Vol.
32, No. 6, pp. 1076-1078, 1980.



[2] Denman E. D. and Beavers A. N., "The Matrix
Sign Function and Computation of Systems," Appl.
Math. Comput., Vol. 2, pp. 63-94, 1976.

[3] Hasan M. A., "Higher Order Matrix Sign Func-
tion Algorithms for Solving the Algebraic Riccati
and Lyapunov Equations," submitted.

[4] Hoskins W. D. and Walton D. J., "A Faster, More
Stable Method for Computing the pth Root of Pos-
itive De�nite Matrices," Linear Algebra Appl., Vol.
26, pp. 139-163,1979.

[5] HoskinsW. D. andWalton D. J., "A Faster Method
of Computing the Square Root of a Matrix," IEEE
Trans. Automatic. Contr., Vol. AC-23, No. 3, pp.
494-495, 1978.

[6] Y. Hua Y. and Sarkar T. K., "On SVD for Esti-
mating Generalized Eigenvalues of Singular Matrix
Pencils in Noise," IEEE Trans. on Signal Process-
ing, Vol. 39, No. 4, pp. 892-899, April 1991.

[7] Kenney C., and Laub A. J., "Rational Iterative
Methods for the Matrix Sign Function", SIAM J.
Matrix Anal. Appl., Vol 12., pp. 237-291, April 1991.

[8] Kenney C. S., Laub A. J., and Papadopoulos P.
M., A Newton-Squaring Algorithm for Computing
the Negative Invariant Subspace of a Matrix, IEEE
Trans. Automatic Control, Vol. 38, No. 8, pp. 1284-
1289, August 1993.

[9] Kenney C. S. and Laub A. J., The Matrix Sign
Function, IEEE Trans. Automatic Control, Vol. 40,
No. 8, pp. 1330-1348, August 1995.

[10] Koc C. K., Bakkaloglu B., and Shieh L. S., "Com-
putation of the Matrix Sign Function Using Con-
tinued Fraction Expansion," IEEE Trans. Auto-
matic Control, Vol. AC-39, No. 8, pp. 1644-1647,
Aug.1994.

[11] Stickel E. U., Separating Eigenvalues Using the
Matrix Sign Function, Linear Algebra Appl., 148,
pp. 75-88, 1991.

[12] Stoica P., and Soderstrom T. and Ti F., "Asymp-
totic Properties of the High-Order Yule-Walker Es-
timates of Sinusoidal Frequencies," IEEE Trans.
Signal Processing, Vol. 37, No. 11, pp. 1721-1734,
November 1989.

[13] Stoica P., and Soderstrom T., "Statistical Analy-
sis of MUSIC and Subspace Rotation Estimates of
Sinusoidal Frequencies'" IEEE Trans. Signal Pro-
cessing, Vol. 39, No. 8, pp. 1836-1847, August 1991.

[14] D. W. Tufts and R. Kumaresan, "Estimation
of Frequencies of Multiple Sinusoids; Making Lin-
ear Prediction Perform Like Maximum Likelihood,"
Proc. IEEE, Vol. 70, pp. 975-989, Sept. 1982.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

frequency

a
m

p
lit

u
d

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

frequency

a
m

p
lit

u
d

e

Figure 1: Spectral peaks at f1 = 0:5 and f2 = 0:52
with SNR = 5dB. The top plot resulted from applying
exact MUSIC-based estimator, while the bottom was
generated using Algorithm 1.
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Figure 2: Spectral peaks at f1 = 0:5 and f2 = 0:52
with SNR = 0dB. The top plot resulted from applying
exact MUSIC-based estimator, while the bottom was
generated using Algorithm 1.


