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ABSTRACT

Bilinear methods for jointly estimating the channel coe�-
cients and the symbols emitted through these channels are
very appealing. However, they can be trapped by local min-
ima. This paper provides (i) a full characterization of the
local minima, (ii) a simple criterion for checking whether
the procedure has converged to the global minimum, (iii)
a simple algorithm for obtaining this solution, with a proof
of convergence.

1. INTRODUCTION

Blind equalization and channel identi�cation is a �eld that
has received increased interest recently, mainly due to the
availability of second-order based methods that have the
potential for providing fast and e�cient algorithms. These
second-order methods rely on channel diversity when the
received signal can be seen as the output of a single-input
/multiple-output (SIMO) channel. Such a setup may be
applicable either in the case of reception through an antenna
array or in the case of fractionnaly spaced receivers.

Many methods are based on statistical considerations
[7, 6, 9], tending to assume that the input sequence is long
enough, so that its statistics can be estimated precisely.
Some methods solve the problem by treating the input as
a deterministic signal, resulting in the so-called determin-
istic approach to blind identi�cation [5, 4, 1]. While some
results are easily derived in the statistical framework, their
practical use can be increased by translating them into the
deterministic one. The results below are an example of such
a situation.

Among the many methods that have been recently pro-
posed, a very promising one is the so-called "bilinear" one,
which has been proposed by various authors under various
names. This method is a blind least-squares approach for
joint data/channel identi�cation. The goal is to minimize a
distance between the received signal and the estimated one,
which results in a bilinear cost function when the channel
coe�cients are unknown. The main interest of such bi-
linear approaches is that one does not invert the channel,
which always has drawbacks (noise ampli�cation, resulting
colored noise at the output of the equalizer, � � �). Most of
these methods exploit the �nite alphabet property of the
data to provide an iterative algorithm based on Maximum
likelihood, [8, 10]. As a consequence, the algorithm can be
trapped in the numerous local minima of the cost function,

but works very well when it converges to the actual opti-
mum. Some methods do not rely on this �nite alphabet
property, [3] but the local minima problems are not fully
solved, while experimentally being recognized as being of
smaller importance. This class of methods is usually de-
noted as Iterative Quadratic Maximum Likelihood (IQML)
[3], or Deterministic Maximum Likelihood [8].

This paper provides an explicit characterization of the
local minima of such methods. It is shown that the possi-
ble local minima do not meet the required assumption that
the channels have "maximum diversity", or that the input
sequence is "persistently exciting". Hence, we provide a
tractable way of checking whether the algorithm has been
trapped in a local minimum or not. More practically, we
derive a simple iterative algorithm (similar to IQML), with
a convergence proof, that can be used in a context of short
data records. We then draw a parallel with the determinis-
tic blind maximum likelihood approach.

Note that, for mathematical convenience and simplicity
of the derivation, all results are given in the noiseless case.

2. PROBLEM STATEMENT

This paper considers a multichannel model to represent the
SIMO equivalent of a digital communication system.

Let xi(�) denote the output from the ith channel with
the FIR channel impulse response fhi(�)g, all channels be-
ing driven by the same input s(�). For linearly modulated
communication signals, we have

xi(n) =

MX
k=0

hi(k)s(n� k) + bi(n) i = 1; : : : ; L (1)

where L is the number of channels, M is the maximum
order of the channels. bi(�) (i = 1; : : : ; L) are supposed to
be i.i.d, mutually uncorrelated processes.

Consider the vectorized processes

x(n) = (x1(n); : : : xL(n))
T (2)

b(n) = (b1(n); : : : ; bL(n))
T (3)

h(k) = (h1(k) : : : ; hL(k))
T (4)

hj = (hj(0); : : : ; hj(M))T (5)

h = (h1;hL)
T (6)

where the superscript T denotes transposition. The data



model is written as the following convolution equation:

x(n) =

MX
k=0

h(k)s(n� k) + b(n) (7)

Denote by XN (n) =
�
x(n)T ; : : : ;x(n�N + 1)T

�T
a space time data record of size LN , sN (n) =

(s(n); s(n� 1) : : : ; s(n�M �N + 1))T the M + N vec-
tor involving a total of M + N interfering symbols and

BN (n) =
�
b(n)T ; : : : ;b(n�N + 1)T

�T
. The following lin-

ear model holds:

XN (n) = TN(h)sN (n) +BN(n) (8)

where TN (h) is the LN � (M + N) generalized Sylvester
matrix

TN (h) =

0
BBBB@

h(0) � � � h(M) 0 � � � 0

0
. . .

. . .
. . .
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...

. . .
. . .

. . . 0
0 � � � 0 h(0) � � � h(M)

1
CCCCA

Permuting the role of s(�) and h we also have:

XN (n) = U (sN (n))h+BN (n) (9)

where U (sN (n)) is the LN � L(M + 1) data matrix:

U (sN (n)) =

0
BBB@

IL 
 s1(n)
T

IL 
 s1(n� 1)T

...

IL 
 s1(n�N + 1)T

1
CCCA (10)


 denotes the Kronecker product and IL is the identity
matrix of size L. The speci�city of the multichannel frame-
work compared to the classical single channel situation is
that BOTH equations (10) and (8) form an overdetermined
set of equations under appropriate conditions.

Assume that M is known or correctly estimated and
consider the problem of identifying both h and sN(n) from
XN (n) only. An obvious way to solve this, is to consider
the minimization of the criterion

J
�
ĥ; ŝN (n)

�
= jjXN (n)� TN (ĥ)ŝN (n)jj

2 (11)

where jj � jj is the L2-norm. Our results rely on the assump-
tion that TN (h) has full rank. It is now well known (see [7])
that the full rank conditions are given by

Lemma 1 TN (h) has full rank, i:e: rank (TN(h)) = M+N,

if i) the polynomials Hj(z) =
PM

i=0 hj(i)z
i have no common

zero, ii) N >M and iii) at least one polynomial Hj(z) has
degree M .

3. BLIND IDENTIFICATION

This section provides a su�cient condition for the criterion
in (11) to have only the true co�cients channel and symbols
(up to a scalar factor) as a global minimum. This is another
proof of the same result given in [2].

De�nition 1 The linear complexity of sequence sN (n) is
de�ned as the smallest value of c for which there exists
�1; : : : �c 2 C such as

s(k) =
cX

i=1

�is(k � i) ; k = n�N �M � c+ 1; : : : ; n

Linear complexity measures the predictability of a �nite-
length deterministic sequence.

Consider the 2M + 1 � (N �M) matrix VM (sN(n))0
BBB@

s(n) s(n� 1) � � � s(n�N +M + 1)
s(n� 1) s(n� 2) � � � s(n�N +M)

...
...

...
s(n� 2M) s(n� 2M � 1) � � � s(n�N �M + 1)

1
CCCA

If sN (n) has linear complexity greater than 2M and N >

3M + 1, then rank (VM(sN(n))) = 2M + 1.

Theorem 1 In the noiseless case, if TN(h) has full rank
and if the linear complexity of sN (n) is greater than 2M ,

J
�
ĥ; ŝN(n)

�
= 0 i� 9� 2 C

� such as ĥ = �h and ŝN (n) =

sN (n)=�.

Proof is outlined in appendix A
Remarks: (i) In a statistical context, Moulines et al:,

[7], provide a mechanism for estimating the channel coe�-
cients (i:e: h) in the cases where the autocorrelation matrix
of the transmitted symbols is unknown, provided it has full
rank. Our result only extend this mechanism in providing
explicit conditions for the empirical autocorrelation esti-
mate to be full rank. (ii) Even if Theorem 1 says that the
bilinear criterion has the right global minimum, it does not
provide information on the convergence towards the mini-
mum of (11) because J has possible local minima.

These local minima are now characterized.

4. LOCAL MINIMA

Considering equations (10) and (8), it is easily seen that�
ĥ; ŝN (n)

�
is a stationnary point of J i� one can �nd

"wrong" estimates ŝN (n) and ĥ of s and h characterized
by:

ŝN (n)
�TN (ĥ)

�
TN(ĥ) = sN (n)

�TN(h)
�TN (ĥ) (12)

ĥ�U(ŝN (n))
�U (ŝN(n)) = h�U(sN (n))

�U(ŝN (n))(13)

where � denotes trans-conjugaison.
Unfortunatly, it seems very di�cult to �nd the explicit

solution of (12) and (13) in the general case. And for small
values of L, M , N , when (12) is solvable, calculation of the
Hessian matrix of J (required for deciding if the solutions of
(12) and (13) are local minima or not) is even more di�cult.

However, the following theorem shows that there is no
local minimum in J if the estimated channels do not have
common zeroes and if the estimated input sequence is per-
sistently exciting :



Theorem 2 In the noiseless case, suppose that
�
ĥ; ŝN (n)

�
is a local minimum of J. If TN (h), TN (ĥ) have full rank
and if the linear complexity of sN(n) and ŝN (n) is greater

than 2M ; then ĥ = �h and ŝN (n) = sN (n)=�.

proof is outlined in appendix B.

5. BLOCK ALGORITHM

If TN (ĥ) has full rank and if ŝN (n) has linear complexity
greater than 2M (hence U (ŝN(n)) has full rank) equations
(12) and (13) become:

ŝN (n) =
�
TN (ĥ)

�
TN (ĥ)

��1
TN (ĥ)

�
XN (n) (14)

ĥ = (U(ŝN (n))
�U(ŝN (n)))

�1
U(ŝN (n))

�XN (n)(15)

We derive from (14) an Iterative Quadratic Least Square
algorithm (IQML), similar to Hua's TSML algorithm [3].

Given a value h(k) of ĥ, we deduce s
(k)
N (n) by solving in the

least mean-square sense (11), s
(k)
N (n) = TN (h

(k))#XN (n)

(the superscript # denotes Moore-Penrose pseudo inverse).

And from s
(k)
N (n) and the observation XN (n), we deduce

h(k+1) = U
�
s
(k)
N (n)

�#
XN (n). The process is then iterated

until convergence. Each computation being a least squares
problem, both steps have no local minimum problem. The
question now is about the convergence of the global proce-
dure.

Another way to express this algorithm with projections
is the following:

Take an initialization of s
(0)
N (n) and h(0), then

s
(k+1)
N (n) = �

h(k);Ns
(k)
N (n) (16)

h(k+1) = �
s(k+1);Nh

(k) (17)

where �
h(k);N (resp. �

s(k+1);N ) is the orthogonal projection

onto range
�
TN(ĥ)

�
(resp. range (U(ŝN(n))).

�
ĥ;N = TN (ĥ)

#
TN (ĥ)

�
; �ŝ;N = U(ŝN (n))

#U(ŝN (n))
�

Each step of the algorithm decreases jjXN (n)�TN(h
(k))

s
(k)
N (n)jj2 so it converges to a point (h1; s1N (n)). One easily
veri�es that (h1; s1N (n)) is a local minimum of J . So we
have the

Theorem 3 If (h1; s1N (n)) statis�es asumptions of theo-
rem 2, then (h1; s1N (n)) is equal to (h; sN(n)) up to a scalar
factor.

Figure 1 shows the convergence of the algorithm to the
global minimum while �gure 2 shows a convergence to a lo-
cal minimum which is detected because the estimated chan-
nels share a common zero.

Practically, simple and reliable ways for checking the
globality of the minimum, and restart the algorithm at a
right location still remains to be found.

6. LINK WITH THE DETERMINISTIC
MAXIMUM LIKELIHOOD APPROACH

As its name indicates, DML considers some of the stochastic
parameters (s(n)) as deterministic quantities.

The additive noise samples fb(n)g are assumed to be
i.i.d complex random variables that are gaussian with zero
mean and unknown variance �2b, the real and the imaginary
parts being independent. The likelihood function is the pdf
of the noise

p (XN (n); �(n)) =
1

(2��2
b
)LN=2

e
� 1

2�2
b

jjXN (n)�TN (ĥ)ŝN (n)jj
2

(18)

where �(n) = (ŝN(n)
T ; ĥT )T .

The goal to determine the parameter �(n) that maxi-
mizes p (XN (n); �(n)). The maximization or the likelihood
fonction therefore boils to the following least-square prob-

lem: min
ĥ;ŝN (n)

J
�
ĥ; ŝN(n)

�
.

This optimization is separable, so we have to minimize����
����
�
ILN � TN (ĥ)

�
TN (ĥ)

�
TN (ĥ)

��1
TN (ĥ)

�
�
XN (n)

����
����2. So

h = � argmax
ĥ

�������
ĥ;NXN (n)

������2 (19)

where � is a scale factor. However, as described in the work
by Slock and Papadias, the solution is obtained through a
highly non linear minimization procedure, as seen above.
Since the equivalence between the "bilinear methods" and
the Deterministic ML has been recognized, we thus have
shown that the solution of DML can be obtained through
a sequence of least squares problems.

7. CONCLUSION

The characterization of the local minima provided in this
paper opens several new possibilities for these so-called bi-
linear or deterministic ML methods.

� this provides the base for methods that will converge
to the global minimum.

� As shown in [2], recursive solutions are easily derived
form the block methods derived in the paper.

� These methods have the potential for providing the
equivalent in the multichannel framework of the "De-
cision Feedback Equalizer" (with soft decisions), with
the additional property of a guaranteed convergence.

Further work will be reported.

A. PROOF OF THEOREM 1

The idea of the proof is due to D. Gesbert [2]. A di�erent
proof can be found in [11].

Rewrite XN (n) = TN(h)sN (n) = TN (ĥ)ŝN (n) as

TM+1(h)VM (sN (n)) = TM+1(ĥ)VM (ŝN(n)).
range (TM+1(h)VM(sN(n))) = range (TM+1(h)) (because
rank (VM(sN(n))) = 2M + 1). Then range (TM+1(h)) =

range
�
TM+1(ĥ)

�
.



Using [7, theorem 2], there exists � 2 C such as ĥ = �h,

but ĥ 6= 0 implies � 6= 0. Plus, TN (h) has full column rank,
so it is left invertible, then ŝN (n) = sN (n)=�.

B. PROOF OF THEOREM 2

For simplicity assume that N = 3M + 1.
Sketch of the proof:

1 { If
�
ĥ; ŝN (n)

�
is a local minimum of jjXN (n) �

TN (ĥ)ŝN(n)jj
2 then

�
ĥ; ŝM+1(n� k)

�
is a local mini-

mum of jjXM+1(n � k) � TM+1(ĥ)ŝM+1(n � k)jj2 (8k 2
f0; : : : ; 2Mg).

Let X̂M+1(n� k) = TM+1(ĥ)ŝM+1(n� k).

2 { Denote eRXM+1(n),
eRX̂M+1

(n) and eRŝM+1
(n) the

sample covariance of the vector XM+1(n), X̂M+1(n) and
ŝM+1(n). using (12), we have

X̂M+1 = �
ĥ;M+1XM+1 (20)

eRX̂M+1
(n) = �

ĥ;M+1
eRXM+1(n)�ĥ;M+1 (21)

3 { Write the EVD of eRXM+1(n),
eRX̂M+1

(n) and

�
ĥ;M+1, then show that range(RXN) = range (TN(h)) (be-

causeeRXM+1(n) = TM+1(h) eRŝM+1
(n)TM+1(ĥ)

�
and eRŝM+1

(n)
has full rank.).

4 { Deduce that range (TN(h)) = range
�
TN(ĥ)

�
, then

ĥ = �h ([7, theorem 2]).

5 { Finally,
������TN(h)hsN (n) � �ŝN (n)

i������2 has a local

minimum, but is quadratic in ŝN (n), hence the minimum is
global. Finally, due to theorem 1, ŝN (n) = �sN (n).
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