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Abstract— The paper proposes a neural network approach to
equalize time varying nonlinear channels. The approach is ap-
plied to a satellite UMTS channel composed of time invariant
linear filters, a non-linear memoryless amplifier and a time vary-
ing multipath propagation channel. The neural network equal-

izer has a Radial Basis Function structure. The usual k-mean

clustering algorithm is replaced by a Kohonen learning rule. This
results in an RBF-SOM equalizer which outperforms the LMS
equalizer, and which has better recovering abilities (after pass-
ing through a high fading area) than the former RBF equalizer.

I. INTRODUCTION

Neural Networks (NNs) have been used in many signal
processing and communication applications (see e.g. [11] for
a review). When compared to classical techniques, NNs dis-
play attractive behavior for digital communications. For ex-
ample, NNs outperform classical techniques used for modelling
nonlinear memoryless channels such as Travelling Wave Tubes
(TWT) amplifiers [10]. Recently, NNs were used for identi-
fication and characterization of digital satellite channels [12].
Concerning the equalization problem, Multilayer Perceptron
(MLP) were shown to be able to equalize non-minimum phase
channels [2], and demonstrated good tracking abilities when
used in multipath fading channels [1].

Recently, the Radial Basis Function (RBF) NN has been
applied to the equalization problem because of its structural
simplicity [3]. The RBF equalizer estimates the probability
density function of the incoming signal in order to approximate
the optimal Bayesian equalizer. It combines the supervised
LMS algorithm with the blind k-mean clustering algorithm.
This method proves to give good results when applied to simple
non-linear channels [3][4]. However it converges much more
slowly when the number of required neurons grows. In [8] a
method was proposed to reduce the number of neurons of the
RBF equalizer.

Independently, Self Organizing Maps (SOM) show great abil-
ities to adaptively fit to any kind of random distribution with-
out a priori information [5]. In [6] a SOM was used together
with a Decision Feedback Equalizer (DFE) in order to improve
the decision device. This system successfully equalized a non-
linearly distorted channel.

This paper proposes to combine the RBF and SOM based
equalizers by replacing the RBF k-mean algorithm with a Ko-
honen algorithm. The resulting algorithm was applied to the
equalization of a satellite mobile communication channel. This
kind of channel includes power amplifiers used near saturation
which enhance important non-linear distortions.

The paper is organized as following. Section II briefly intro-
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Fig. 1. Radial Basis Function Neural Network.

duces RBF equalizers. Section III describes the RBF network
combined with a Kohonen algorithm. Finally, Section IV pro-
vides computer simulation results to demonstrate the efficiency
of this algorithm.

1I. RBF EQUALIZER

RBF Networks have already been investigated as equalizers
[7]. In [4] they are successfully applied to the equalization of
simple non-linear channels. As depicted in Figure 1, the RBF
network consists of 2 layers. Each neuron on the hidden layer
computes the norm distance (usually Euclidean) between its
center and the input vector (both M dimensional vectors), and
passes the result through a non-linear function. The output
response of the RBF network yields:
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where w; are the complex weights of the output layer, C; are the
centers and o; is the spread parameter of the gaussians. The
parameters of the RBF network are adapted with the recursive
Hybrid Clustering algorithm :

o Self-organized learning: The nearest center from the input
vector is moved in its direction (k-mean clustering algo-
rithm):
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o Supervised learning: The output layer weights are updated
with the complex LMS algorithm:
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The centers of the neuron converge to the channel states.
The channel states are the M dimensional possible outputs of
the equivalent noiseless channel. The number of channel states
may be referred to as the channel order.

III. AN RBF NETWORK ADAPTED WITH A KOHONEN
ALGORITHM

When the channel order increases, the number of required
neurons becomes prohibitive and their convergence very erratic.
Indeed many neurons may be ”forgotten” by the k-mean algo-
rithm (i.e. they almost never win) and others may oscillate
between two or more channel states. The coefficients which
correspond to the ”forgotten” neurons converge to zero, and
thus, the RBF network converges to a suboptimal equalizer.

If the input dimension is lower or equal to 3, it is possible to
easily associate a neighborhood function to the RBF neurons.
The neurons of the RBF are then regarded as a SOM. The
neurons update equations follow the Kohonen learning rule:

k = arg(ming | X (n) — Cx(n)])
Ci(n+1)=C;(n) + h;i(n) [X(n)— Ci(n)] Vied{l,..,N}

where (- is the winning neuron, and h;;(n) is the so-called
neighborhood kernel. This function must respect hi;(n) — 0
when n — 00 to ensure convergence. Nevertheless, as mul-
tipath fading channel equalization is considered, this function
should not approach zero (it can be chosen time constant). This
enables the network to adapt itself quickly when the channel
characteristics vary.

In this paper, the study is restricted to a two dimensional
input network (in Phase and Quadrature components of the
incoming signal). The number of required neurons is then 4 if
4-QAM transmission is considered, and 16 if 16-QAM transmis-
sion is modulated. In both cases, the topological neighborhood
is a grid, and the neighborhood kernel is set to a (0 < a < 1)
on the diagonal, to approximately ¢ for direct neighbors and
to 0 otherwise. For the 4-QAM channel, it yields:
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The architecture of an RBF-SOM equalizer is shown in Fig-
ure 2, in the case of a 4-QAM transmission.

The output layer complex coefficients are adapted with a
complex LMS algorithm.

IV. SmmuLATION RESULTS
A. Channel Description

Consider the baseband equivalent satellite mobile communi-
cation channel model given in Figure 3.
The channel characteristics are exposed below:

e MODULATION : 4-QAM or 16-QAM modulation, with
10 samples per symbol. A base-band transmission was
simulated. The symbol rate is 30 Mbauds.

¢ FILTER Fg : This emission filter is a four-pole Chebychev
filter. Its 3dB bandwidth is 428 (100 MHz), where T is
the symbol duration.
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¢ FILTER Fy : The linear filter at the input of the satellite
is a four-pole Chebychev filter. Its 3dB bandwidth is %
(120 MHz).

« NON-LINEAR AMPLIFIER : The TWT is defined by the
analytic model of Saleh [9]. The non-linearity is memory-
less because it only depends on the instantaneous power of
the input signal. The amplitude gain and phase wrapping

are :
2
AN = e
4.0033r2
B(r) = 20
(r) 1+9.104r2

where r is the norm of the sample passing through the TWT.

o FILTER F2 and MULTIPATH : Fs is a four-pole Cheby-

chev filter. Its 3dB bandwidth is 22 (200 MHz). It is
followed by a 1-reflected-path multipath model. The ad-
justable parameters are the time delay 7; between the di-
rect path and the reflected path, the attenuation of the re-
flected path and the speed of the mobile, which determines
the shape of the Doppler spectrum of the multiplicative
noise.

B. Results

In the following simulations, the multipath channel charac-
teristics are: 71 = 10~ 7s, 5dB of attenuation between the direct
path and the reflected path, mobile speed of 150km/h.

As a first step, 4-QAM modulation is considered. Figure 4
gives the BER vs the down-link SNR, with an up-link SNR
fixed to 15dB. The RBF-SOM network performs better than
the LMS equalizer at any level of down-link noise. As shown
in Figure 5, the RBF-SOM keeps having better performance
when crossing a high fading area.

Figure 6 shows a comparison between the classical RBF
equalizer and the new RBF-SOM equalizer. Both equalizers
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Fig. 4. BER vs SNR: Comparison between the RBF-SOM and a Tapped
Delay Line adaptated with the LMS. Up-link SNR = 15dB
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Fig. 5. Evolution of the BER : Comparison between the RBF-SOM and
the LMS.

perform as well as long as the topology of the centers remain
stable (e.g. in low fading area). However, the RBF-SOM equal-
izer recovers much more quickly after crossing high fading ar-
eas.

The aforementioned phenomena are more sensitive for the
16-QAM channel, because it becomes much more difficult to
recover the right topology after a fading hole or during initial-
ization. Figure 7 compares the behavior of a classical RBF with
the RBF-SOM, after a few iterations. The RBF-SOM centers
have already converged to an acceptable topology, whereas the
classical RBF centers have not.

V. CONCLUSION

The paper proposed a method to improve the RBF equalizer
resorting to SOM. A typical example of satellite UMTS channel
has been presented. Simulation results proved the RBF-SOM
equalizer to provide better BER performance than the RBF
equalizer in presence of multipath fading conditions. This im-
provement is all the more sensitive as the number of symbols
in the modulation scheme grows.

x10

RBF-SOM
RBF

BER over the last 500 symbols

0 5 10 20 x10°?
Number of symbols

Fig. 6. Evolution of the BER : Comparison between the RBF-SOM and
the RBF (mobile speed 300km/h).
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