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ABSTRACT

Markov Chain Monte Carlo (MCMC) samplers have been
a very powerful methodology for estimating signal param-
eters. With the introduction of the reversible jump MCMC
sampler, which is a Metropolis-Hastings method adapted to
general state spaces, the potential of the MCMC methods
has risen to a new level. Consequently, the MCMC meth-
ods currently play a major role in many research activities.
In this paper we propose a reversible jump MCMC sam-
pler based on predictive distributions obtained by integrat-
ing out unwanted parameters. The proposal distributions are
approximations of the posterior distributions of the remain-
ing parameters and are computed by sampling importance
resampling (SIR). We apply the method to the problem of
signal detection and parameter estimation of signals. To il-
lustrate the proposed procedure, we present an example of
sinusoids embedded in noise.

1. INTRODUCTION

Standard signal processing problems are signal detection
and estimation of signal parameters. The list of detection
and estimation methods is large, and the method that is ap-
plied to observed data normally depends on the nature of
the observed data. Recently, the statistical and signal pro-
cessing community have given considerable attention to pa-
rameter estimation methods known as Markov Chain Monte
Carlo (MCMC) [1], [5], [9]. MCMC methods are in essence
numerical integrations implemented by Markov chains. In
many estimation problems one needs to integrate over the
posterior distribution of the model parameters or data sam-
ple spaces given the model parameters, and therefore it is
not surprising that MCMC is attracting so much attention.

The principal idea of MCMC methods is to generate
samples from a multivariate distribution by constructing a
Markov chain of simpler distributions from which it is easy
to sample and whose equilibrium is the original multivari-
ate distribution. There are many ways for constructing such
chains, but two have been particularly convenient. One is
the Gibbs sampler [3], and the other is the Metropolis-Hastings
algorithm [7], [8], of which the Gibbs sampler is only a spe-
cial case.
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Recently, an important and qualitatively new method
has been added to the family of MCMC samplers [6]. It
is more general and is applicable to problems where the
Markov chain sampler can jump between parameter sub-
spaces corresponding to different models, which are typi-
cally of different dimensions. As such, this method, also
known asreversible jumpMCMC, finds immediate applica-
tion in many difficult signal and image processing problems
where not only the parameters of the signal model are un-
known, but also the dimensionality of the parameter vector.
This includes detection of signals, mixture deconvolution
[10], multiple change point problems [6], time series mod-
eling [11], object recognition [5], [6], and variable selection
[4].

In our paper, we exploit a reversible jump MCMC sam-
pler on problems where the number of signals is unknown
and some of their parameters are nuisance parameters. Our
objective is to obtain a sampler that converges rapidly to
the equilibrium distribution. The approach is based onpre-
dictive distributions of the considered models obtained by
integrating out the nuisance parameters. More specifically,
first we determine the predictive densities, which are func-
tions of the parameters of interest, and given the observed
data, act as likelihoods. Then we use them to construct pro-
posals for making the transitions from one model parame-
ter space to another, or for moving within the same model
parameter space. This is accomplished by approximating
the likelihood via the sampling importance resampling tech-
nique (SIR). Once the reversible jump MCMC sampling is
completed, we obtain the joint posterior distribution of the
number of signals and their parameters. Then the samples
obtained can be used for inference about the models and
their parameters.

We provide an example which shows the steps in im-
plementing the proposed procedure. We assume that the
observed data represent closely spaced sinusoids embedded
in noise. The number of sinusoids and their parameters
are unknown. A reversible jump MCMC sampler is con-
structed which produces the joint distribution of frequencies
and number of sinusoids. The sampler constantly attempts
to jump from a current to adjacent models, and the probabil-
ities for such moves are calculated for each attempt. From
the resulting joint distribution, we easily deduce the most
likely number of sinusoids and the estimates of their fre-
quencies. A numerical example is also presented.



2. GENERAL PROBLEM STATEMENT

We assume that there is a set of models which represent can-
didates for the generating mechanism of some observed data
y. The models are parametric with some of their parameters
being of interest, and the remaining being nuisance param-
eters. We would like to develop a procedure that provides
the joint a posteriori distribution of the models and their pa-
rameters, from which we can make inference about many
quantities. For example, the estimates of the a posteriori
probabilities of the models would certainly be important, as
well as various estimates of the parameters of interest. In
brief, if the models are denoted byM0,M1,M2, ...,Mk,
..., and the associated parameters�0, �1, �2, ...,�k, ..., then
the objective is to estimatep(Mi;�ijy).

3. REVERSIBLE JUMP MARKOV CHAIN MONTE
CARLO SAMPLING STRATEGY

The reversible jump MCMC sampler is an extension of the
standard MCMC method in that it allows for jumps between
models and their parameter spaces of different dimensions
as the sampling proceeds. It is based on the Metropolis-
Hastings method and it involvesmovesthat represent changes
of models or updating of the current model parameters. The
move that requires updating of parameters is implemented
in the usual way as there is no change of dimensions and/or
change of parameter spaces. The proposal of new model
and the evaluation of the probability of its acceptance is
done, however, by imposing dimension matching and re-
taining detailed balance. Overall, of course, the Markov
chain has to be irreducible and aperiodic.

Suppose that the current model isMk and its param-
eters�k, and that there is a proposal for a movem to the
modelMj . One way to construct the reversible jump sam-
pler is to allow for a transition which is accepted with prob-
ability �, where

� = min(1; �0) (1)

and

�0 =
p(yj�j ;Mj)p(�j ;Mj)g(�k;y;Mk)j(Mk;Mj)

p(yj�k;Mk)p(�k;Mk)g(�j ;y;Mj)j(Mj ;Mk)
(2)

where thep(yj�)’s are the likelihood functions of the mod-
els, p(�j ;Mj) andp(�j ;Mj) their priors, theg(�)’s the
proposal distributions for all the parameters of the appro-
priate models, andj(Mk;Mj) andj(Mj ;Mk) the proba-
bilities of proposing transitions fromMj toMk, and from
Mk toMj , respectively .

The reversible jump sampler has two general types of
moves. One is the updating of the current model’s param-
eters, and the other, transition to a different model. Once
the sampler is in the parameter space of modelMk, a move
is chosen whether to stay with the same model, or to move
to another model, sayMj , which is reachable fromMk

in one step. If such an attempt is made, then a proposal
for the parameter values of the destination model has to be
provided, which is obtained from the proposal distribution

g(�j ;y;Mj). A new set of parameters is sampled from the
parameter space ofMk usingg(�k;y;Mk), and the proba-
bility of acceptance� is calculated from (1). Then a random
number from the uniform distribution on (0,1) is drawn, and
if it is less than�, the transition toMj is accepted. Other-
wise, the model remains asMk. The procedure continues
in the same fashion long enough to allow for convergence
to the equilibrium distribution.

4. IMPLEMENTATION ISSUES

The convergence of the reversible jump MCMC sampler is
an important issue, and to improve it, it is desirable to de-
crease the dimension of the parameter space over which we
draw the samples. This is more so when some of the param-
eters are nuisance parameters. Also, in many signal pro-
cessing problems some parameters can be estimated much
more easily than others, and once the model is known they
can readily be obtained. So, it is preferable to avoid sam-
pling from the spaces of these parameters. This is accom-
plished by integrating the parameters out from the model.
For example, if there are linear parameters in a model, we
could remove them from the list of parameters for sampling,
thereby save time for the sampler and improve convergence.
Similarly, in the usual case of signal in white Gaussian noise
with unknown variance, the variance can also be straightfor-
wardly integrated out.

Recall that with the reversible jump MCMC method there
are frequent comparisons of models with different dimen-
sions. Then it seems that our definition of the priors may
be critical for the rapid convergence of the posterior to the
equilibrium distribution, especially in cases when we want
to be as uninformative about the parameters as possible. If
the priors are noninformative, the unknown proportionality
constants will cause problems due to the dimension mis-
match in the comparison of the models.

One approach that avoids these difficulties is based on
predictive densities. Predictive densities have been success-
fully applied to model selections before (see for example [2]
and its references). The underlying concept for using them
is to partition the data into an estimation and validation sets,
that isy is split intoye andyv . The estimation set is used
to obtain proper priors for the nuisance parameters, and the
validation set for obtaining the likelihoods for the remaining
unknown parameters.

Thus, we propose elimination of the nuisance parame-
ters by analytical integration using the concept of predictive
densities. In many problems of interest in signal process-
ing, this is easily accomplished. Then we proceed with the
reversible jump MCMC sampler where the predictive den-
sities, which are functions of the unknown parameters, act
as likelihood functions.

When we make the moves with the sampler, we have
to provide proposals for new values of the parameters. We
do it by uniformly sampling from the parameter space of
the parameter, then we reweight the so obtained samples
by the likelihood, and finally resample from the reweighted
discrete distribution, i.e., apply the SIR procedure [1].



5. AN EXAMPLE OF SINUSOIDS EMBEDDED IN
NOISE

Here we present an example that is of frequent interest in
the signal processing community. It involves the detection
of sinusoids in noise and the estimation of their parameters.
Let the model withk sinusoids be represented by

y =Hkak +w (3)

whereHk is anN�2k matrix,ak a2k�1 vector of ampli-
tudes, andw a zero mean Gaussian vector with covariance
matrix�2I. Without loss of generality it is assumed that the
unknown frequencies of the sinusoids,fk, take values from
the interval(0; 1=2). InHk every two columns span the sig-
nal space of a different sinusoid. For example, the first and
second columns ofHk are defined by

hT1 = [1 cos(2�f1) cos(2�f12) � � � cos(2�f1(n� 1))]
(4)

and

hT2 = [0 sin(2�f1) sin(2�f12) � � � sin(2�f1(n� 1))]:
(5)

The variance and the amplitudes are nuisance parameters,
so we would like to integrate them out. As prescribed in the
previous section, since we work with improper priors for the
amplitudes and variance, i.e.,

p(ak; �
2) / 1

�2
(6)

we use predictive densities. Ifm is the number of samples
of ye used for obtaining proper priors for the nuisance pa-
rameters, andyv is the remaining portion of the data, we
obtain

p(yv jye; fk;Mk) =
1
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whereP?e is a projection matrix formed fromHe, that is
P?e = I �He(H

T
eHe)

�1HT
e , andP? is similarly formed

fromH. Note that we have dropped the indicesk from the
projection matrices, but it should be clear from the context
that they have rank equal to2k. Also, it should be kept in
mind that the dependence ofp(yv jye; fk;Mk) on fk is not
emphasized in (7), but it should be obvious that the projec-
tion matrices and the determinants are functions offk.

In the case of no sinusoids, the predictive densities be-
come

p(yv jye;M0) =
1
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With (7) and (8) on hand, we can proceed with the sampling
as prescribed in the previous section.

6. NUMERICAL RESULTS

To demonstrate the approach with a numerical example, we
have created 50 data samples according to

y[n] = a1 cos(2�f1n+ �1) + a2 cos(2�f2n+ �2) + w[n]
(9)

wheren = 0; 1; 2; � � � ; N � 1, f1 = 0:215, f2 = 0:225,
N = 50, �1 = 1 rad, �2 = 1:5 rad,w[n] was a white
Gaussian noise with variance�2 = 1, and the amplitudes
werea1 = a2 =

p
2, which corresponds to signal-to-noise

ratios of 0 dB. Note that the separation of the sinusoids is
two times smaller than the Rayleigh resolution.

The sampler could jump only to adjacent models, which
were defined as models with one more or one less sinusoid
than the current model. In other words, if the current model
wasMk, k > 0, the sampler could jump toMk�1,Mk+1,
or stay withMk. Each of these moves had probability of
1/3. If the current model wasM0, there were only two pos-
sibilities, one to jump toM1, and the other to stay with
M0. The probability of these moves was 1/2. It is impor-
tant to note that the maximum number of sinusoids was not
limited. The region from which the frequencies were sam-
pled was defined byF = (0:20; 0:24). To get the proposal
for the sampled frequency, 20 samples were generated from
a uniform distribution defined onF . They were reweighted
according to the appropriate predictive density and the fre-
quency was then resampled. For the priors of the frequen-
cies we used the uniform discrete prior, in this case 1/20.
Finally, in each cycle the estimation data set was randomly
selected, and the data samples in that set were not necessar-
ily successive.

We let the reversible jump MCMC sampler go through
10,000 iterations. The first 200 hundred iterations were not
used in our summary computations. In Figure 1 we show
the moves of the sampler between iterations 4001 and 6000.
We observe that the sampler had occasional visits to models
1, 3, and 4, but overall it spent most of the time with the
model with two sinusoids. In Figure 2 the posterior proba-
bilities of the various models are plotted, and there we no-
tice that the posterior probability of model 2 is greater than
0.9. In Figure 3, the histograms of the sampled frequencies
from modelM2 are shown. Their means arêf1 = 0:2143

andf̂2 = 0:2275. For higher signal-to noise ratios, the sam-
pler would stay even longer with the second model, whereas
with the decrease of the signal-to-noise ratio, the more and
more preferred model is the one with single sinusoid. If the
signal-to-noise ratio continues to decrease, visits to model
M0 become increasingly common.

Again, we emphasize that the number of hypothesized
sinusoids is not limited, provided we have enough data to
obtain proper predictive densities. In general, for as long
as there is a scheme which allows reachability of any model
from any point in the state space, the reversible jump MCMC
sampler will move through it and spend most of the time
with the model or set of models which are the most likely.
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Figure 1: Moves of the sampler between iterations 4001 and
6000.
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Figure 2: Posterior probabilities of the models.
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Figure 3: Histograms of the sampled frequencies fromM2.

7. CONCLUSIONS

A reversible jump MCMC sampler has been proposed for
problems with nuisance parameters that can readily be in-
tegrated out. Since the priors for these parameters are as-
sumed improper, we use predictive densities to construct
the likelihoods for the remaining parameters. An example
is provided that shows the implementation of the proposal
along with some numerical results. The procedure is rather
general and can be applied to many other problems with
models whose parameters are analytically marginalizable.
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