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ABSTRACT

This paper is dealing with a numerical method for data-fitting and
estimation of the continuous higher derivatives of a given signal
from its non-exact sampled data. The proposed algorithm is a gen-
eralization of the algorithm proposed by C. H. Reinsch[1967]. This
algorithm is conceived as being a key element in the structure of the
numerical observer discussed in our last papers. The presented al-
gorithm seems to be flexible because of the introduction of equiva-
lent conditions of smoothness derived from finite difference meth-
ods. Detailed steps of the computational method will be given to
evaluate the continuousapproximates of higher derivatives of a sig-
nal given by its noisy discrete values together with the filtered con-
tinuous signal. Satisfactory results have been obtained showing the
efficiency of such an algorithm.
Keywords: Spline functions, Numerical differentiation,
Observers, Smooth filters.

1. INTRODUCTION

The problem of filtering as well as estimation of higher derivatives
of the measurable signals in the presence of noise becomes one of
the principal ways to achieve control objectives, construct nonlin-
ear observers and fulfil other physical requirements([1], [2], [8],
[11], [12], [13]). This problem has not yet been fully exploited in
control and observation theory and necessitates some refinements.

The problem of smoothing and numerical differentiation for
non-exact data has received widespread attention in the literature
([3], [4], [6], [7], [10], [14]). Some of these works ([4], [9], [5],[14])
were developedfor particular cases. Therefore, the extension to the
general case is one of our major interests, and mainly motivates us
to improve the quality of observation and filtering with numerical
methods.

The main subject of this paper is to introduce a general smooth-
ing algorithm. Detailed steps of the computational method will be
given to evaluate the continuousapproximates of higher derivatives
of a signal given by its noisy discrete values together with the fil-
tered continuous signal. This work is related to the previous work
in smoothing data by cubic spline functions developed by C. H.
Reinsch, (see [4]). In comparison with the algorithm given by Rein-
sch, this paper gives a fast solution of the optimization problem
with a simple criterion. The solution turns out to be a spline func-

tion of arbitrary order, fixed a priori by the user. Higher derivatives
are then approximated by differentiating the obtained spline func-
tion.

The presented algorithm seems to be flexible because of the in-
troduction of equivalent conditions of smoothness derived from fi-
nite difference methods. Moreover, the minimum of the functional
to be considered is unique and a fast convergence of Newton meth-
ods is expected. We divided our work as follows : The second sec-
tion is devoted to the formulation of the minimization problem. In
Section 3, a detailed solution of the problem is studied. The paper
concludes with simulation results and further remarks.

2. PROBLEM FORMULATION

Let (�) be a dynamical system with output � , and let (�1; � � � ; �n)t
be the noisy discrete values which correspond to the equally spaced
instants (t1; � � � ; tn). One of the famous method to smooth the nonex-
act data, is to consider the constrained minimization problem

minimize

Z tn

t1

�
�̂
(m)
�2

dt; (1)

subject to the constraint
nX
i=1

�
�̂(ti)� �(ti)

��i

�2
� S; �̂ 2 C

(m)[t1; tn]: (2)

The notation �̂(m) denotes the m-th derivative of the function �̂ ,
��i; i = 1; � � � ; n are positive numbers taken as estimates of the
standard deviation in �i and the numberS is redundantused to rescale
the quantities ��i . In article [4], the author suggests thatS could be
chosen in the interval [n�(2n)

1
2 ; n+(2n)

1
2 ]. We replace the last

constraint by
nX
i=1

�
�̂(ti)� �(ti)

�2 � n �
2
;

if the random noise is supposed to be of zero mean and variance
�2. Since the vector � is available as discrete data, in this article
we replace the continuous integral (1) by the following smoothness
condition

min
n�1X
i=m

h
�̂
(m)
i (�t)m

i2
: (3)



We note �̂(m)
i : the finite difference scheme of the m-th derivative

of the function �̂ at the point i. �t designates the regular forward
difference of t, equal to ti+1 � ti. Finally, the problem is formu-
lated as follows

min
n�1X
i=m

h
�̂
(m)
i (�t)m

i2
:

subject to the constraint (2).

3. SOLVING THE OPTIMIZATION PROBLEM BY THE
SPLINE FUNCTIONS OF ARBITRARY ORDER

In order to compute the m-th derivative of �̂ at point i we will use
only the points �̂i�m+1; �̂i�m; � � � ; �̂i; �̂i+1. For example, form =
2; 3; 4, and 5 the smoothness conditions are
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�2
:

respectively. These smoothness conditions are expressed in matrix
form as follows

kT �̂k2 (4)

where k:k denotes the Euclidean norm andT is as an (n�m)�(n)
matrix of a general row

(�1)m+j�1 m!

(j � 1)!(m� j + 1)!
; j = 1; � � � ;m+ 1; (5)

and the solution of (1) and (2) turns out to be the minimum of the
functional

J := �̂
t
T
t
T �̂ + �

�
(� � �̂)tD�2(� � �̂) + �

2 � S
	
: (6)

� is the Lagrange parameter and� is an auxiliary variable, D�2 =
diag(��1

�2; � � � ; ��n�2). We look for the minimum of (6) in the
space of the B-spline functions of order k = 2m, we replace �̂ by

nX
i=1

�ibi;2m(t); (7)

such that � = (�i; i = 1 � � � ; n) 2 Rn, and bi;2m is the i-th posi-
tive B-spline function. We write J in terms of the control vector�
as follows

J := �
t
B
t
T
t
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with
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2
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3
775 :

The optimum of the functinal J(�;�; �) is obtained by differ-
entiating this latter with respect to �, � and �. We obtain

(T t
T + �D

�2)B�� �D
�2
� = 0; (8)

2�� = 0; (9)

(� �B�)tD�2(� �B �) + �
2 � S = 0: (10)

Let u be an (n�m)� 1 vector such that

D
2
T
t
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By substituting (11) in (8), we get
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2
T
t
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and after expanding the latter equation, we obtain

(T D
2
T
t + � I)u = T �; (13)

where I is an (n�m)� (n�m) identity matrix. From (13) we
write

u(�) = (T D
2
T
t + � I)�1 T �; (14)

and the control vector � is

�(�) = B
�1 (� �D

2
T
t
u(�)) (15)

The Lagrange parameter� must not be equal to zero. We conclude
from (9) that

� = 0; (16)

and

(� � B�(�))tD�2(� �B�(�)) = S: (17)

The unknown Lagrangeparameter� has to satisfy the last equation.
Then the control point of the spline will be obtained using equations
(14) and (11). Note that

F
2(�) := (� �B �)tD�2(� � B�)

= kD�1(� � B�)k2
= kDT

t
uk2:

If we note Q = DT t , then the Lagrange parameter is obtained as
the solution of the nonlinear equation

u
t(�)Qt

Qu(�) = S: (18)

By the application of the Newton method, the root �r of (17) is ob-
tained after a limited number of the following iterations
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#
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We have

dF 2

d�
= 2utQt

Q
du

d�

= �2utQt
Q (T D

2
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while F 2(�k) > S, the Newton iteration is

�k+1 = �k +
utQtQu

utQtQ (T D2 T t + �k I)�1u
��p

utQtQup
S

� 1

�
(19)

Remark 3.1 The matrix (T D2 T t+� I) is invertible for any� �
0.

Remark 3.2 The functionF 2(�) is strictly decreasingin� because
the matrix �Qt Q (T D2 T t + � I)�1 is negative definite for all
� � 0. Consequentely, the rootof the nonlinear equationF 2(�) =
S is unique.

The Newton iteration involves at each step the calculation of the
inverse of the matrix (T D2 T t + � I). In order to accelerate the
rate of convergence of the method, we compute the inverse of the
matrix (T D2 T t + � I) by the use of the Leverrier algorithm. We
have

(T D
2
T
t + � I)�1 =

Pn

i=1
Ri�1 �

n�iPn

i=0 �i �
n�i

(20)

such that

�i :=
1

i
Trace

�
T D2 T t Ri�1

�
; (21)

Ri := �i I
? � T D

2
T
t
Ri�1: (22)

where I? is the (n � n) identity matrix. The matrices (Ri; i =
0; � � � ; n � 1) and the coefficients (�i; i = 0; � � � ; n) should be
computed before starting the Newton iteration. A fast convergence
is expected.

4. THE ALGORITHM

� For a selectedorder2m and for given breakpoints(t1; � � � ; tn),
construct an optimal knot sequence (t)1

n, (see [3]), and the
corresponding B-spline bases bi;2m ; i = 1; � � � ; n.

� Compute the matrix B such that

Bi;j := bj;2m(ti); i = 1; � � � ; n; j = 1; � � � ; n:

� Compute the matrix T such that

Ti;j :=

8><
>:

(�1)m+j�i Cm
j�i

for i = 1; � � � ; n�m;
and j = i � � � ;m+ i;

0 otherwhise.

� Compute the matrix

D
�2 := diag(��1

�2
; � � � ; ��n�2):

� Compute the matricesQ := DT t and (Ri; i = 0; � � � ; n�
1) with the coefficients (�i; i = 0; � � � ; n) using eqs (20),(21),(22).
If the random noise is of mean zero and variance�2, replace
the matrix D by the identity matrix and S by n�2 .

� Compute the root of the nonlinear equationF 2(�) = S us-
ing equations (18), (19), and (20).

� Compute the vector u from (14).

� Solve the linear system

B � = (� �D
2
T
t
u);

with respect to the control points of the spline �. Since the
matrix B is positive definite, we write B = �Rt �R : the
Cholesky factorization of the matrix B. We have to solve

�Rt
y = (� �D

2
T
t
u)

with respect to y, then

�R� = y

with respect to �.

� Compute the derivatives of the spline using the following
formulas

D
j(
X
i

�iBi;k) =
X
i

�i
j+1

Bi;k�j ;

with

�r
j+1 :=

�
�r for j = 0,
1

k�j

�r
j
��r�1

j

tr+k�j�tr
for j > 0.

5. AN EXAMPLE

Here, we consider the system

_�1 = �2;

_�2 = �150(1 + cos(t))�1 � 10(2 + sin(t)) �2;

y = �1 + w:

where the scalar output y is supposed to be corrupted by a white
noise of zero mean and variance �2 = 0:0012. We consider that
the measurements are collected at a regular step �t = 0:01S.

6. CONCLUSIONS

Based upon an a priori knowledge of the nature of the noise, the
steps of a numerical algorithm used as a filter and an observer were
examined. The design problem has been formulated in such a man-
ner that finding the coefficients of the smooth function and its deriva-
tives requires to solve a simple constrained optimization problem.
The simplicity of the criterion to be minimized comes from the fact
that new conditions of smoothness are proposed. In order to solve
the design problem, a resolution of a nonlinear equation and a lin-
ear system are required.
Finally, it is possible to extend the idea of the equivalent condi-
tions of smoothness to solve the classical regularization problem
discussed in [14]. It is also possible to choose the regularization
parameter, in such a manner, that is independent of the statistical
properties of noise and only depends on the measurement. This
possiblility is currently under investigation and will be reported else-
where when available.
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Figure 1: The filtered output (continuous line), the noisy output (+). In the simulations presented below, the
order of the spline isk = 2m = 6 and the number of noisy points isn = 151. Figure 2 represents the continuous
filtered output � with the discrete noisy output. In figure 3 and 4 we show the first and the second derivative of the filtered
solution with the exact derivatives. We mean by exact derivatives, the solution of the last system without additive noise.
Using the last algorithm, we realize that the Newton method converges after 21 iterations, and the Lagrange parameter
is, approximately, equal to 0.0207.
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The first derivative of the spline with the exact derivative

Figure 2: The exact derivative (+), the derivative of the spline (continuous)
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Figure 3: The exact derivative (+), the derivative of the spline (continuous)

7. REFERENCES

[1] A. Teel and L. Praly, “Global stabilizability and observabil-
ity imply semi-global stabilizability by output feedback”,
Systems & Control Letters. Vol: 22, pages: 313-325, 1994.

[2] A. Teel and L. Praly, “Tools for semi-global stabilization by
partial state and output feedback”, SIAM J. Control Optim.,
Vol 33(5), pages : 1443-1488, September 1995.

[3] C. de Boor, “A practical guide to splines”, Springer-Verlag,
New York, 1978.

[4] C. H. Reinsch, “Smoothing by spline functions”, Nu-
merische Mathematick, Vol: 10, pages: 177-183, 1967.

[5] C. H. Reinsch, “Smoothing by spline functions. II”, Numer.
Math, Vol: 16, pages: 451-454, 1971.

[6] G. Wahba, “Smoothing noisy data with spline functions”,
Numer. Math, Vol: 24, pages: 383-393, 1975.

[7] G. Wahba, “Data-based optimal smoothing of orthogonal
series density estimates”, The annals of statistics, Vol: 9(1),
pages: 146-156, 1981.

[8] K. H. Khalil and F. Esfandari, “Semiglobal stabilization of
a class of nonlinear systems using output feedback”, in Pro-
ceedings of the 31 st Conference on Decision and Control.
Pages: 3423-3428, Tucson, Arizona, December, 1992.

[9] R. S. Anderson and P. Bloomfield, “Numerical differentia-
tion procedures for non-exact data”, Numer. Math, Vol: 22,
pages: 157-182, 1974.

[10] R. S. Anderson and P. Bloomfield, “A time series approach
to numerical differentiation”, Technometrics, Vol: 16(1),
pages: 69-75, 1974.

[11] S. Diop and S. Ibrir, “On numerical observers. Application
to a simple academic adaptive control example ”, in Pro-
ceedings of the 4-th European Control Conference, Brus-
sels, Belgium, July 1997.

[12] S. Diop and J. W. Grizzle and P. E. Morral and A. G. Ste-
fanoupoulou, “Interpolation and numerical differentiation
for observer design”, in Proceedings of the Americal Con-
trol Conference, Americain Control Consil, Pages: 1329-
1333, Evanston, IL.

[13] S. Ibrir, “A numerical observer-controller for the stabiliza-
tion of nonminimum phase mechanical system”, in Pro-
ceedings of International Workshop in modelling and con-
trol of mechanical systems, London, June 97.

[14] P. Craven and G. Wahba, “Smoothing noisy data with spline
functions. Estimation the correct degree of smoothing by the
method of Generalized Cross-Validation. ”, Numer. Math,
Vol: 31, pages: 377-403, 1979.


