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ABSTRACT

This paper is dealing with a numerical method for data-fitting and
estimation of the continuous higher derivatives of a given signal
from its non-exact sampled data. The proposed algorithm isagen-
eralization of the algorithm proposed by C. H. Reinsch[1967]. This
algorithmisconceived asheing akey element in the structure of the
numerical observer discussedin our last papers. The presented al-
gorithm seemsto be flexible becauseof the introduction of equiva-
lent conditions of smoothnessderived from finite difference meth-
ods. Detailed steps of the computational method will be given to
evaluatethe continuousapproximatesof higher derivativesof asig-
nal given by its noisy discrete valuestogether with the filtered con-
tinuoussignal. Satisfactory results havebeen obtained showing the
efficiency of such an algorithm.

Keywords: Spline functions, Numerical differentiation,
Observers, Smooth filters.

1. INTRODUCTION

The problem of filtering aswell as estimation of higher derivatives
of the measurable signalsin the presence of noise becomes one of
the principal waysto achieve control objectives, construct nonlin-
ear observers and fulfil other physical requirements([1], [2], [8],
[11], [12], [13]). This problem has not yet been fully exploited in
control and observation theory and necessitates some refinements.

The problem of smoothing and numerical differentiation for
non-exact data has received widespread attention in the literature
(31,141,161, [7],[10], [14]). Someof theseworks ([4], [9], [5],[14])
weredevelopedfor particular cases. Therefore, the extensionto the
general caseis one of our major interests, and mainly motivates us
to improve the quality of observation and filtering with numerical
methods.

Themain subject of thispaper isto introduce ageneral smooth-
ing algorithm. Detailed steps of the computational method will be
givento evaluatethe continuousapproximatesof higher derivatives
of asignal given by its noisy discrete values together with the fil-
tered continuous signal. Thiswork is related to the previous work
in smoothing data by cubic spline functions developed by C. H.
Reinsch, (see[4]). In comparisonwith thealgorithm givenby Rein-
sch, this paper gives a fast solution of the optimization problem
with asimple criterion. The solution turns out to be a spline func-

tion of arbitrary order, fixed apriori by theuser. Higher derivatives
are then approximated by differentiating the obtained spline func-
tion.

The presented algorithm seemsto be flexible because of thein-
troduction of equivalent conditions of smoothnessderived from fi-
nite difference methods. Moreover, the minimum of the functional
to be considered is unique and a fast convergence of Newton meth-
odsis expected. We divided our work asfollows : The second sec-
tion is devoted to the formulation of the minimization problem. In
Section 3, a detailed solution of the problem is studied. The paper
concludeswith simulation results and further remarks.

2. PROBLEM FORMULATION

Let (%) beadynamica systemwith output ¢, and let (¢1, - - -, ¢n )’
bethe noisy discrete valueswhich correspondto the equally spaced
instants(¢1, - - -, tr ). Oneof thefamousmethod to smooththe nonex-
act data, isto consider the constrained minimization problem

minimize/ ’ [f(m)]z) dt, 1)

subject to the constraint
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The notation ¢™ denotes the m-th derivative of the function ¢,
6¢,1 = 1,---,n are positive numbers taken as estimates of the
standard deviationin ¢; and thenumber .S isredundant usedtorescale
thequantitiesé ;. Inarticle [4], theauthor suggeststhat S could be
chosenintheinterval [ — (2n)%, n+ (2n)%]. We replacethelast
constraint by
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if the random noise is supposed to be of zero mean and variance
0. Since the vector ¢ is available as discrete data, in this article
wereplace the continuousintegral (1) by the following smoothness
condition

miny" {@im) (At)m} . @®



We note ff’") : thefinite difference scheme of the m-th derivative
of the function ¢ at the point :. At designatesthe regular forward
difference of ¢, equal to ;41 — ¢;. Finaly, the problem is formu-
lated asfollows

n—1 ) 2
min Z {Cf’") (At)m} .
subject to the constraint (2).

3. SOLVING THE OPTIMIZATION PROBLEM BY THE
SPLINE FUNCTIONS OF ARBITRARY ORDER

In order to compute the m-th derivative of ¢ at point : we will use
only thepoints¢; —m+1, Ci—m, - - -, (i, Ci+1. FOrexample, form =
2, 3, 4, and 5 the smoothnessconditions are
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respectively. These smoothnessconditions are expressed in matrix
form asfollows
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where||.|| denotesthe Euclideannormand T"isasan (n—m) x (n)
matrix of ageneral row

(J— 1)!(m.—j—|— )

and the solution of (1) and (2) turns out to be the minimum of the
functional

=TT+ M{(C=O' D=+ =S} (6)

X isthe Lagrange parameter and . is an auxiliary variable, D=2 =
diag(8¢17%,--+,6¢,~?). Welook for the minimum of (6) in the
space of the B-spline functions of order k = 2m, we replace ¢ by

(_1)m+J—1 ]‘:17...7777,_1_17 (5)

Zaibi,2m(t)7 (7)

suchthata = (ai, ¢ =1 ---,n) € R", and b; 2 isthei-th posi-
tive B-spline function. Wewrite J in terms of the control vector o
asfollows
J:=a'B'T' T Ba+
AM(¢=Ba)D*(¢—Ba)+u* - S}.

with
bik(t)  bek(t1) b,k (t1)
bik(t2)  bak(t2) b,k (t2)
ann = . . .
bl,k(tn) b2,k(tn) bn,k(tn)

The optimum of the functinal J(«, p1, A) is obtained by differ-
entiating this latter with respect to «, ;+ and A. We obtain

(T'T4+AD?)Ba—-AD7?¢ =0, (8)
2uX =0, ©
(C—Ba)D?*(¢(—-Ba)+u’—S=0. (10)

Let u bean (n — m) x 1 vector such that
D*T'uy=¢(—Ba. (1)
By substituting (11) in (8), we get
(T"T+AD72)(¢ = D*T w) = AD™%¢ (12)
and after expanding the latter equation, we obtain
(TD*T' +XDu=T¢, (13)

where [ isan (n — m) x (n — m) identity matrix. From (13) we
write

uN) = (TD*T + 217" T¢, (14)
and the control vector « is
a(A) =B7 (( = D*T" u(X)) (15)

The Lagrange parameter A must not be equal to zero. We conclude
from (9) that

u=20, (16)
and
(¢ =BaW)'DT*(( - Ba(}) = 5. 17)

Theunknown Lagrangeparameter A hasto satisfy thelast equation.
Thenthe control point of the splinewill be obtai ned using equations
(14) and (11). Note that
F?’(\) = (¢(—Ba)'D7?’(-Ba)
= D7 (¢ - Ba)|’
|D T ul®.

If wenote @ = D T", then the L agrange parameter is obtained as
the solution of the nonlinear equation

u' (M) Q" Qu(X) = S. (18)

By the application of the Newton method, theroot A, of (17) isob-
tained after alimited number of the following iterations
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We have

dF> o du
o T Meexn
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while F?(Ax) > S, the Newton iteration is
u' Q' Qu «
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Remark 3.1 Thematrix (7" D 7"+ X I) isinvertiblefor any A >
0.

Akt1 = A +

(19)

Remark 3.2 Thefunction 7 ()) isstrictly decreasingin \ because
the matrix —Q* Q@ (T D’ T" + X I)~" is negative definite for all
A > 0. Consequentely, the root of the nonlinear equation 772 (\) =
S isunique.

The Newton iteration involves at each step the calculation of the
inverse of the matrix (7" D* T* + A T). In order to accelerate the
rate of convergence of the method, we compute the inverse of the
matrix (T D? T* + X I) by the use of the Leverrier algorithm. We
have

" Ri_ )\n_i
(TD*T 4+ X1)~' = Ei}—ln_ (20)
Zi:opi)‘
such that
pi = l,Trace[TDz)TtRi_l], (21)
I3
Ri = pI"=TD*T'Ri_;. (22)

where * isthe (n x n) identity matrix. The matrices (R:,7 =
0,---,n — 1) and the coefficients (p;,¢ = 0, ---,n) should be
computed before starting the Newton iteration. A fast convergence
is expected.

4. THEALGORITHM

¢ Foraselectedorder 2m andfor givenbreakpoints(éy, - - -, tn),
construct an optimal knot sequence(t), ", (see[3]), and the
corresponding B-spline basesb; 21,1 = 1,- -+, n.
e Compute the matrix B such that
Bij :=bjom(ti),i=1,---,n; j=1,---,n.

e Compute the matrix 7" such that

(_1)m+]—i Cm]—i

T .— fori=1,---,n—m;
83 T . . .
andj=1¢---,m+i,
0 otherwhise.
¢ Compute the matrix
D% = diag(6¢: 77, -, 86.7).

e Computethematrices@ := DT  and(R;, t =0, -, n—

1) with thecoefficients(p;, ¢ = 0, - - -, n) usingegs(20),(21).(22).

If therandom noiseis of mean zero and variance o, replace
the matrix D by the identity matrix and S by no>.

o Compute the root of the nonlinear equation £ (A) = S us-
ing equations (18), (19), and (20).
e Compute the vector « from (14).
e Solvethelinear system
Ba=((—-D*T" u),
with respect to the control points of the spline «. Sincethe
matrix B is positive definite, we write B = R’ R : the
Cholesky factorization of the matrix B. We haveto solve
Ry=(-D’T u)
with respect to y, then
Ra = Y
with respect to «.

¢ Compute the derivatives of the spline using the following
formulas

DJ(Z Oz,‘B,‘yk) = Z Ozi]+1Bi,k—J7

with

@ for 3 =0,
a Tl = { ! j j J
r = 1 arl—ar_y

i for j > 0.

5. AN EXAMPLE

Here, we consider the system
b o= G
¢ —150(1 + cos(t)) 1 — 10(2 + sin(t)) (s,
y = G+w

where the scalar output ¥ is supposed to be corrupted by a white
noise of zero mean and variance o = 0.0012. We consider that
the measurements are collected at aregular step At = 0.015.

6. CONCLUSIONS

Based upon an a priori knowledge of the nature of the noise, the
stepsof anumerical algorithm used as afilter and an observer were
examined. Thedesign problem hasbeenformulated in suchaman-
ner that finding the coeffi cients of the smooth function andits deriva-
tives requires to solve a simple constrained optimization problem.
Thesimplicity of the criterion to be minimized comesfrom the fact
that new conditions of smoothness are proposed. In order to solve
the design problem, aresolution of a nonlinear equation and alin-
ear system are required.

Finally, it is possible to extend the idea of the equivalent condi-
tions of smoothness to solve the classical regularization problem
discussed in [14]. It is also possible to choose the regularization
parameter, in such a manner, that is independent of the statistical
properties of noise and only depends on the measurement. This
possiblility iscurrently under investigationand will bereported el se-
where when available.



The discrete noisy data with the spline

The noisy output with the spline
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F| gure 1 The filtered output (continuous line), the noisy output (+). In the simulations presented below, the
order of thesplineisk = 2m = 6 and the number of noisy pointsisn = 151. Figure 2 represents the continuous
filtered output ¢ with thediscrete noisy output. Infigure 3 and 4 we show thefirst and the second derivative of thefiltered
solution with the exact derivatives. We mean by exact derivatives, the solution of the last system without additive noise.
Using the last algorithm, we realize that the Newton method converges after 21 iterations, and the Lagrange parameter
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is, approximately, equal to 0.0207.

The first derivative of the spline with the exact derivative

The first derivatives
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Fi gure 2 Theead derivative (+), the derivative of the spline (continuous)

The second derivative of the spline with the exact derivative

The second derivatives
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Fi gure 3 Theean derivative (+), the derivative of the spline (continuous)

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

7. REFERENCES

A. Teel and L. Praly, “Global stabilizability and observabil-
ity imply semi-global stabilizability by output feedback”,
Systems & Control Letters. Vol: 22, pages: 313-325, 1994.

A. Teel and L. Praly, “ Toolsfor semi-global stabilization by
partial state and output feedback”, SSAM J. Control Optim,,
Vol 33(5), pages: 1443-1488, September 1995.

C. deBoor, “A practical guideto splines’, Springer-\erlag,
New York, 1978.

C. H. Reinsch, “Smoothing by spline functions’, Nu-
merische Mathematick, Vol: 10, pages: 177-183, 1967.

C. H. Reinsch, “Smoothing by spline functions. 11", Numer.
Math, Vol: 16, pages. 451-454, 1971.

G. Wahba, “Smoothing noisy data with spline functions”,
Numer. Math, Vol: 24, pages: 383-393, 1975.

G. Wahba, “Data-based optimal smoothing of orthogonal
seriesdensity estimates’, The annalsof statistics, Vol: 9(1),
pages: 146-156, 1981.

K. H. Khalil and F. Esfandari, “ Semiglobal stabilization of
aclassof nonlinear systemsusing output feedback”, in Pro-
ceedings of the 31 st Conference on Decision and Control.
Pages: 3423-3428, Tucson, Arizona, December, 1992.

R. S. Anderson and P. Bloomfield, “Numerical differentia-
tion proceduresfor non-exact data’, Numer. Math, Vol: 22,
pages. 157-182, 1974.

R. S. Anderson and P. Bloomfield, “A time series approach
to numerical differentiation”, Technometrics, Vol: 16(1),
pages: 69-75, 1974.

S. Diop and S. Ibrir, “On numerical observers. Application
to a simple academic adaptive control example”, in Pro-
ceedings of the 4-th European Control Conference, Brus-
sels, Belgium, July 1997.

S. Diop and J. W. Grizzle and P. E. Morral and A. G. Ste-
fanoupoulou, “Interpolation and numerical differentiation
for observer design”, in Proceedingsof the Americal Con-
trol Conference, Americain Control Consil, Pages: 1329-
1333, Evanston, IL.

S. lbrir, “A numerical observer-controller for the stabiliza-
tion of nonminimum phase mechanical system”, in Pro-
ceedings of International Workshop in modelling and con-
trol of mechanical systems, London, June 97.

P. Craven and G. Wahba, “ Smoothing noisy datawith spline
functions. Estimation the correct degree of smoothingby the
method of Generalized Cross-Validation. ”, Numer. Math,
Vol: 31, pages: 377-403, 1979.



