
Abstract
It is widely recognized that fine-grain parallelism can

greatly enhance a processor’s performance for signal
processing applications. For this reason, future generation
TriMedias will combine VLIW and subword parallelism in
a single CPU. In this article, we present a snapshot of the
new CPU’s design process: the outlines are clear but fine
tuning is still ongoing. We present the design flow and
‘workbench’ that the designers use for further tuning.

Introduction
The TriMedia TM1000 media processor [1][2] is the

first product in a family of processors that Philips Semicon-
ductors Sunnyvale plans to release. It can be used in stand-
alone configurations or as a multimedia accelerator in a PC
environment. Application areas are video conferencing,
MPEG-related applications, 3-D graphics and digital audio.
In this paper we describe the possible CPU architecture of
successors of the TM-1000.

VLIW architectures have been prominent in specialized
multimedia processors [3][4]. These architectures exploit
instruction level parallelism without complex instruction-
issue hardware. As such, VLIW offers a cost-effective alter-
native to superscalar processing. In the same time that the
VLIW concept matured, standard microprocessor instruc-
tion sets have been extended with instructions that operate
on several data elements simultaneously, thus exploiting
subword parallelism [5][6]. The TM1000 is a VLIW archi-
tecture with limited provisions for subword parallelism. To
enhance the performance of the TriMedia CPU core, the in-
struction set will be extended with more subword parallel-
ism.

This paper is organized as follows. We start with a brief
overview of the TM1000 architecture. Next, we explain
how VLIW and subword parallelism can be combined. This
combination leads to a class of CPUs that we are interested
in. To find the optimal instance of this class, we have to
compare the various options with respect to e.g. perform-
ance and area. A formal description of instances is indispen-

sable for such a quantitative comparison. We present the
format of these so-called machine descriptions. The ma-
chine descriptions are used as parameters in the design flow,
so that most experiments with CPU variants only require
adaptation of the machine description. The last section de-
scribes the tool chain in which this is realized.

The TriMedia TM1000 processor
The TM1000 consists of the following components:
• a high-performance bus and memory system that pro-

vides communication between the processing units
• A powerful VLIW DSP-CPU that runs the multimedia

application and operating system software.
• multimedia input and output units
• Two multimedia co-processors that implement MPEG

variable length decoding (VLD) and image processing
functions like spatial scaling, alpha-blending, and
YUV-RGB conversion.

The most innovative part of the chip is the VLIW DSP-
CPU. Each clock cycle, an instruction is fetched from the
instruction cache. Such an instruction consists of up to five

PCI

video in

SDRAM

VLD
co-processor

audio in audio out

timersI2C interface

synchronous
serial
interface

image

co-processor
I$

D$

VLIW

CPU

PCI interface

Fig. 1: TM1000 block diagram

TM1000

video out

main mem. interface

DESIGN SPACE EXPLORATION FOR FUTURE TRIMEDIA CPUs

F.Sijstermans, E.J.Pol, B.Riemens, K.Vissers
Philips Research, Prof. Holstlaan 4,

5656AA Eindhoven, The Netherlands

email: sijs@natlab.research.philips.com

S.Rathnam, G. Slavenburg
Philips Semiconductors, TriMedia Product Group,

811 E. Arques Ave.,
Sunnyvale CA94088, U.S.A.

independent operations. Each operation is issued for execu-
tion on one of the 27 functional units. Examples of function-
al units are ALUs, memory access units, and branch units.
It is the compiler’s task to analyse the availability of func-
tional units, registers, and register file ports. Therefore, all
five operations packed in one instruction can be issued di-
rectly without further run-time control. The only reason for
stalling the pipeline is a cache miss; if these occur the com-
plete pipeline will be stalled.

The operations in the TM1000 are RISC like in the sense
that they operate on up to two register arguments and put
their result back into a register (the obvious exception of
course being explicit load and store operations). There is a
single register file consisting of 128 registers of 32-bits. The
register file has ten read ports and five write ports. Com-
bined with a powerful forwarding network, this enables the
parallel execution of five two-argument and one-result op-
erations per cycle.

VLIW and subword parallelism
The TriMedia concept applies a highly modular design:

many parts can be changed independently of each other.
E.g. at the system level, I/O units or co-processors can be
added or deleted without consequences for other units. For
the DSP-CPU, the number of registers, the set of functional
units, and the number of operations per instruction are typ-
ical parameters. In this section, we discuss possible instruc-
tion set extensions that allow for further exploitation of
subword parallelism.

To clarify the discussion on the concepts of VLIW and
subword parallelism, we consider a trivial example: the ad-
dition of two byte arrays. In C, the loop that implements this
function looks like:

char a[n], b[n], c[n];
int i;
for (i=0; i<n; i++) c[i] = a[i]+b[i];

Below, we show the pseudo-assembly code of the loop

(without initialization) for a ‘normal’ RISC-like processor.
Most operations are obvious. Operations 7 and 8 are jump
operations. We are assuming that there are three branch de-
lay slots, i.e. if the jump in operation 8 is taken, operation 9,
10 and 11 are still executed before control jumps back to op-
eration 1. Operation 7 and 8 are a jump on false and on true,
respectively, where the first argument is the condition and
the second argument is the operation number to jump to.
1 x = *a 7 jmpf g 12
2 y = *b 8 jmpt g 1
3 i += 1 9 a += 1
4 g = i<n 10 b += 1
5 z = x+y 11 c += 1
6 *c = z 12

In this implementation, each iteration takes eleven oper-
ations and hence also eleven clock cycles.

The TM1000 compiler tries to pack as many operations
as possible in each instruction with a maximum of five. It
takes data dependencies and latencies of the operations into
account. Jumps and loads have a latency of three cycles, all
other operations in this example have a latency of one. An-
other restriction is imposed by the number of functional
units of a kind, but this does not play a role for our example.
If no useful operation can be scheduled, the compiler inserts
a ‘nop’ operation. The pseudo-assembly code for the
TM1000 code could be:
1 x=*a y=*b i+=1 a+=1 b+=1
2 g=i<n nop nop nop nop
3 jmpf g 7 jmpt g 1 nop nop nop
4 z=x+y nop nop nop nop
5 *c=z c+=1 nop nop nop
6 nop nop nop nop nop

This code contains the same eleven operations as the se-
quential code, but these operations are shuffled by the com-
piler to fit in six instructions, a reduction of almost a factor
two. This example still exploits limited VLIW parallelism.
How to exploit, with programming in C, the available par-
allelism in this architecture is subject of [7] and [8]

For the next generation of CPUs, we are considering to
extend the use of subword parallelism: a number of separate
elements are packed together in a single register and part of
the instructions operate on these ‘vectors of elements’ rather
than treating the registers as scalar data. Since the benefits
grow with the vector length, we introduce wider registers in
the CPU, typically 64 or 128 bit wide. Unfortunately, cur-
rent compilers cannot detect the opportunities for the use of
subword parallelism. Therefore, the application program-
mer will have to use ‘vector libraries’ that are mapped to
subword parallel instructions. The most convenient pro-
gramming style is offered by C++ in which we can define
vector classes and overload operators. In our example, we
use the class vec64sb of vectors consisting of 8 signed
bytes. The addition of elements of this class is defined to be
a vector addition. The ‘vectorized’ version of our example

register file (128 register 32 bit)

function
unit 1

function
unit 27

function
unit 2

issue
slot 1

issue
slot 2

issue
slot 4

issue
slot 5

issue
slot 3

....

instruction cache

Fig. 2: TM1000 DSP-CPU

becomes:
vec64sb a[n/8], b[n/8], c[n/8];
int i;
for (i=0; i<n/8; i++) c[i] = a[i]+b[i];

Notice that a[i], b[i], and c[i] are vectors of eight bytes now
and the + denotes a vector addition. Thus, every iteration
now handles eight bytes.

The compiler will map this C++ fragment to the assem-
bly code below. We use capitals for the variables in 64-bit
registers. At assembly level, the type information has been
translated into special vector operations.
1 X=ld64b a Y=ld64b b i+=1 a+=1 b+=1
2 g=i<n nop nop nop nop
3 jmpf g 7 jmpt g 1 nop nop nop
4 Z=add64sb X Y nop nop nop nop
5 st64b c Z c+=1 nop nop nop
6 nop nop nop nop nop

The structure of this code is the same as that of the non-vec-
torized code. Instead of one byte, the six instructions now
handle eight bytes, thus achieving a speed up factor of eight.

This small example demonstrates that VLIW instruction
level parallelism and subword data level parallelism can
well be used in combination. Furthermore, although the ex-
ample is oversimplified, people involved in signal process-
ing may recognize some of the ‘typical’ signal processing
characteristics: many samples of a finite resolution are all
treated the same; control processing is relatively simple.

Machine Description
In this section, we explain the formalism that we use to

describe CPUs that combine VLIW and subword parallel-
ism. We call this our ‘machine description’ format. A ma-
chine description file describes all parameterizable features
of the processor. We present a simplified version of the ma-
chine description part that we use for the CPU. The machine
description plays a central role in the CPU’s design process,
which is described in the next section.

One section in the machine description describes the
register files.Scalar and vector registers need not have the
same length. Therefore, more than one register file may be
defined. In the example below, we define two register files:
r for scalar data (the TM-1000 register file) and v for vector
data. The definition of a register file consists of the number
and size of its registers and the number of read and write
ports.
REGISTERS

r SIZE 32 NUMBER 128;

v SIZE 64 NUMBER 32

READ BUSES

REGISTERS r NUMBER 10;

REGISTERS v NUMBER 7;

WRITE BUSES

REGISTERS r NUMBER 5;

REGISTERS v NUMBER 3;

A second part describes the arguments and results of op-
erations, together called the signature. The semantics of an
operation are not a part of the machine description; they are
defined in a separate C-file. Below we show an example of
part of the operations section. The first signature defines the
vector byte load operations, which take a scalar register
with an address as input and put their result in a vector reg-
ister. The second signature defines signed and unsigned in-
teger additions and subtractions with an immediate
argument of which the range is defined.
OPERATIONS

SIGNATURE (r->v)

ld64sb, ld64ub;

SIGNATURE (r, PAR(-256 TO 255) -> r)

iaddi, isubi, uaddi, usubi;

There is no one-to-one mapping between C-level soft-
ware operations and operations in hardware. Several soft-
ware operations may be mapped to the same hardware
operation; other software operations are mapped to multiple
hardware operations. Such mappings are defined in the so-
called pseudo-operation list. In the example below, we de-
fine that the ‘less’ operation is implemented by a ‘greater’
operation with swapped arguments and that the ‘add-imme-
diate’ operation is implemented by an ‘immediate’ opera-
tion followed by an ‘add’ operation. In this list, arguments
and results are prefixed by a $-sign. The result is mentioned
before the operation name, arguments after it.
PSEUDO OPERATIONS

$3 less $1 $2 = $3 gtr $2 $1;

$3 iaddi $1 ($p) = $4 iimm ($p),

$3 iadd $1 $4;

Yet another part of a machine description file describes
the functional units, i.e. operations and latency, and their
number and slots in the CPU. We have seen that the
TM1000 has five slots in which operations can be issued.
An operation can only be scheduled in a slot if a functional
unit that executes this operation is connected to this slot.
Below, we show an example with five alus and two load-
store units. Load-store operations can only be issued in the
first two issue slots.
ISSUESLOTS 5

FUNCTIONAL UNITS

alu

SLOT 1 2 3 4 5

LATENCY 1

OPERATIONS iadd,isub,uadd,usub

memory

SLOT 1 2

LATENCY 3

OPERATIONS ld64b,st64b

Design Flow
The machine description files describe a class of CPUs

from which we have to choose the optimal instance. The
main optimization criteria are performance and chip area.
Here, we focus on performance measurements. In particu-
lar, we explain how our advanced tool set reduces the time
to do design space exploration. Chip area can be estimated
quite accurately by extrapolation of TM1000 results.

Performance measurements are done for a set of rele-
vant multimedia benchmark functions with high processing
demands, in particular in video (de)compression, video
quality improvement, and 3D graphics. These benchmarks
are manually ‘massaged’ into tuned C-programs, taking
into account the target architecture, especially possibilities
for VLIW parallelism and the vector instruction set. The
compiler maps the resulting C-code to object code for the
target architecture, which is then executed by a simulator.
The simulator generates the relevant performance figures
like number of instruction cycles and achieved parallelism.
Analysis of the performance measurements may lead to new
ideas on the architecture. To assess the value of these new
architectures, the performance measurements have to be re-
peated. Thus, the design loop is closed.

The central idea in the design flow is to minimize the ef-
fort for testing a new idea or tuning a design-parameter. To
achieve this, we have developed a retargetable compiler and
simulator that are parameterized with a machine description
file. Performance measurement of another instance of the
CPU, thus, boils down to changing the machine description
and running the compiler and simulator again. The manual
tuning from benchmark to vector C-code usually needs to
be done just once. One reason is that our optimizing compil-
er extracts the VLIW parallelism itself. A second reason is
that the library of C-level vector operations is kept constant
even if the vector hardware changes. The pseudo-operation

section of the machine description file is used by the com-
piler to map software operations to hardware operations.
Only for largely different architectures, the manual tuning
may have to be redone.

Concluding remarks
We have shown how the performance of the DSP-CPU

of the TriMedia can be boosted by a combination of VLIW
and subword parallelism. This mixture appears to be very
suitable for signal processing applications. A unique feature
of our solution is the powerful compiler support that allows
for fast application development. We have made the com-
piler and simulator retargetable to different CPU instances,
in order to exploit this strength for processor design. The
design space is so huge that we can cover a sufficiently large
part only if we let tools do the bulk of the work.

Similar design trajectories exist or are in development
for caches, buses, and co-processors. We use a modular
simulator framework so that design optimization can be
done independently, but a complete system can be simulat-
ed by linking the modules together.

Acknowledgements
Our thanks go to all members of the TriMedia and

Prommpt teams and to all other colleagues that contributed
to the reported work.

References
[1] Gerrit A. Slavenburg, Selliah Rathnam, Henk Dijkstra,

“The TriMedia TM-1 PCI VLIW Media Processor”,
Proc. Hot Chips 8,August 1996

[2]S. Rathnam and G. Slavenburg, “An architectural over-
view of the programmable multimedia processor
TM1”, Proc. Compcon, IEEE CS press, 1996

[3] S. Purcell, “Mpact 2 media processor, balanced 2X
performance”,Proc. Multimedia Hardware Architec-
tures 1997,Proc. SPIE 3021, 1997

[4] “Digital signal processing solutions products”, http://
www.ti.com/sc/docs/dsps/products/c6x/index.htm

[5] Alex Peleg, Uri Weiser, “MMX technology extension to
the Intel architecture”, IEEE Micro, 16(4), August
1996

[6] Ruby B. Lee, “subword parallelism with MAX-2”,
IEEE Micro, 16(4), August 1996

[7]M. Beemster, A. van Inge, F. Sijstermans, “Polyphase
filtering on the TriMedia core”,Proc. Multimedia
Hardware Architectures 1997,Proc. SPIE 3021, 1997

[8]A.K. Riemens, R.J. Schutten, K.A. Vissers, "High speed
video de-interlacing with a programmable TriMedia
VLIW core", Proc. ICASSP , 1997, San Diego, CA.

MM benchmark

analysis

machine
description

Fig. 3: CPU design flow

tuning

compiler

object code

performance

simulator

measurements

vector C-code

