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ABSTRACT

Adaptive Acoustic Echo Cancellation in stereophonic tele-
conferencing is a very demanding application. Characteris-
tics are : very large number of coe�cients, non-stationary
input (speech), (slowly) time-varying systems to be identi-
�ed, plus the speci�c property that both stereo signals are
intrinsically very correlated. Basic versions of stochastic
gradient algorithms have di�culties to meet these require-
ments. We show that, in a multichannel framework, only a
combination of techniques can result in an algorithm which
convergence is governed by a quasi-diagonal matrix. Simu-
lations with data recorded in a conference room demon-
strate the improvement in convergence of our algorithm
compared to the LMS.

1. INTRODUCTION

Teleconferencing systems are expected to provide a high
sound quality. In particular listeners use spatial informa-
tion to locate the voice of the person they are talking with.
Thus, multichannel systems are of great practical impor-
tance. A stereophonic teleconferening system is depicted
in �gure 1. The two loudspeakers signals x1 and x2 are
produced by a unique signal S, �ltered respectively by G1

and G2, the impulse responses of the far-end room. Hence,
the correlation matrix of the received signals x1 and x2 is
singular under the assumptions that the far-end impulse re-
sponses are shorter than the local adaptive �lters and that
the far-end room has no background noise [1], [4], [3]. In
practical situations, these assumptions are not met, and the
matrix is not singular, but strongly ill-conditionned. This
problem is not relevant if one makes use of the Recursive
Least Squares algorithm for tuning the adaptive �lters, but
the resulting computational cost is very high. Hence, it is
necessary to �nd methods with low arithmetic complexity,
(i.e. of a stochastic gradient type) able to provide accept-
able results in such a framework.

Few algorithms have been proposed in this context (see
[1]). This paper proposes an algorithm speci�cally tuned
for fast convergence in a multi-channel situation. It is
emphasized that its convergence is governed by a quasi-
diagonal matrix with coe�cients close to one on the diag-
onal. The corresponding eigenvalue spread of the matrix
is small, thus resulting in an improved convergence rate.
The performances of this algorithm are compared to those
of the two-channel LMS algorithm, both algorithms incor-
porating a suitable step variation strategy in order to take
into account the energy variation of the speech signal.
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Figure 1: Basic sheme for stereophonic acoustic echo can-
cellation

2. THE TWO CHANNEL LMS ALGORITHM

The LMS adaptive algorithm minimizes the mean square
error by updating the estimation of the �lter as each new
data sample is received. x1(n) and x2(n) are the two loud-
speakers signals and yn is the microphone one.

Let W1(n) and W2(n) be the two FIR adaptive �lters,
each one of length L. The symbol (:)T denotes transpo-
sition and E[.] stands for mathematical expectation. The
notation �2u denotes the variance of signal u. Let,

W (n) = (W1(n)
T W2(n)

T )T

X(n) = (x1(n); ::; x1(n�L+1); x2(n))
T ; ::; x2(n�L+1))T

In the two channel case the error is e(n) = y(n) �
X(n)TW (n), so the update equation of the �lter writes:

W (n+ 1) =W (n) + �X(n)e(n)

where � is a scalar stepsize. Obviously the matrix which
governs the convergence of the LMS algorithm in the mean
is Rl = E[X(n)X(n)T ]. Rl is plotted in �gure 2 for L=30
and for a speech signal. Table 1 shows its condition number.
Clearly, the condition number of the matrix governing the
convergence is too large for the algorithm to work properly
in a practical situation. More speci�cally, if one checks the
distance between the estimated impulse response and the
actual one (as shown in �g. 6), it is seen that this error
decreases very slowly, even if the corresponding modeling
error (as shown in �g. 5) shows an acceptable convergence.
The problem comes from the expected changes in the echo
paths (far-end or local) : if the echo path is not estimated
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Figure 2: Matrix governing the convergence of the LMS
algorithm for L=30

precisely, any change in the spectrum of the input or in
the far-end echo path will drastically increase the error.
Classical improvements are based on transform-domain or
Frequency-domain versions of the algorithm as well as sub-
band adaptive �ltering. In what follows, we illustrate that
none of these methods alone is able to cope with the multi-
channel situation (despite a noticeable improvement), but
that a mixed algorithm can make it.

3. THE TWO CHANNEL WSAF ALGORITHM

This algorithm has been chosen as a representative of
the subband-based techniques. The single channel WSAF
(Weighted Subbands Adaptive Filter) has been proposed in
[2] in a monochannel context. This algorithm makes use of a
subband decomposition of the error signal, and minimizes a
sum of the appropriately weighted error components. This
algorithm is of a block type, the block size being equal to
the number of subbands. Let N be the number of �lters
in the �lter bank and KN the length of the �lters in the
orthogonal �lter bank, Hi;0�i�N�1 is one of the �lter in the
bank. Assume that,

Xl(n) = (xl(n); :::; xl(n�KN + 1))T l = 1; 2

X l(n) = (Xl(n); :::; Xl(n� L+ 1))KN�L l = 1; 2

X(n) = (X1(n) X2(n))

The error ekN+n, 0 � n � N � 1, k � 0 is �ltered by
the N �lters of the bank, thus producing N subbands er-
ror eik, 0 � i � N � 1, k � 0. By de�nition, the crite-
rion JWSAF is the weighted sum of the N subbands errors,
JWSAF =

PN�1
i=0 �iE[jeikj2]. The algorithm is obtained

thanks to the evaluation of the instantaneous gradient es-
timate of the criterion [2], leading to the following update
equation:

W ((k + 1)N) =W (kN) + �

N�1X
i=0

�iX
i(kN)eik (1)

where Xi(n)T = (xi1(n); ::; x
i
1(n � L + 1); xi2(n); ::; x

i
2(n �

L + 1)) = HiX(n) is the nonsubsampled output of the ith

�lter. The weights �i are chosen equal to 1=(L(�2
xi
1

+�2
xi
2

)).
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Figure 3: Matrix governing the convergence of the WSAF
for L=30 N=16 K=2

It was shown [2] that, if the �lterbanks are very selective,
this choice corresponds to the fastest convergence in each
subband when � = 1. At this point, no speci�c care has
been taken of the speci�cities of the two-channel case. De-
note �W (n) the error on the estimation of the �lter W (n)
at time n. Under the asumptions that no noise is added to
the microphone signal y(n) and that x1 and x2 are uncorre-
lated from the adaptive �lter taps, we obtain the equation
describing the convergence in the mean,

E[�W ((k+ 1)N)] = (I2L � �
N�1X
i=0

�iRXi;Xi)E[�W (kN)]

where RXi;Xi = E[Xi(n)Xi(n)T ]:RXi;Xi can be written in
the form of a four block matrix as,

�
E[Xi

1(n)X
i
1(n)

T ] E[Xi
1(n)X

i
2(n)

T ]
E[Xi

2(n)X
i
1(n)

T ] E[Xi
2(n)X

i
2(n)

T ]

�
(2)

Figure 3 plots the matrix R =
PN�1

i=0 �iRXi;Xi for a speech
signal and for L=30, N=16 and K=2. It is seen that
the correlation matrix governing the convergence is better
shaped (and conditioned, see table 1) that the initial LMS
algorithm one, but the correlations between signals show
up as strong sub-diagonals.

4. THE TRANSFORM-DOMAIN

ALGORITHMS

When looking at the covariance matrices of the LMS
algorithm and WSAF, it is clearly seen that the very
strong correlation between the channels is still the prob-
lem. Hence, one could wonder what result would be pro-
vided by a very simple transform-domain algorithm, the
transform being made from the simple sum and di�erence
between the channels. Such a transform is the matrix

F = 1=
p
2

�
IL IL
IL �IL

�
. It is illustrated on table 1 that

this approach is not su�cient to provide a noticeable im-
provement (in case of speech signal the condition number
is only divided by 3).



5. THE TWO CHANNEL TD-WSAF

ALGORITHM

When observing both correlation matrices of the WSAF
and LMS, one can guess that the transform F will be more
e�cient on the WSAF than on the LMS algorithm. This
can be explained as follows : The WSAF matrix is almost
tridiagonal. When working with stationary signals, the co-
e�cients of the diagonal within each block are equal. More-
over by constructions the values on the diagonal of R tend

to be similar. Finally, R can be written :

�
a1IL a2IL
a2IL a1IL

�

with a1 and a2 two parameters depending on the input sig-
nals and on the �lter bank. To improve the convergence
rate of the WSAF we have to reduce the eigenvalue spread
of R. This is done by diagonalizing R, using matrix F as
de�ned above.

Now, if we come back to the WSAF and if we replace
in (1) the adaptive �lter W (kN) with W 0(kN)=FW (kN)

and Xi(k) with ~Xi(k) = FXi(k) we obtain the WSAF in
the transform domain. Since F is an orthogonal transform,
the resulting algorithm is strictly equivalent to the WSAF.

Finally, as classically done in a TDAF, introduce a
weight matrix to adjust the stepsize in an appropriate way
for each tap. The corresponding update equation is:

W 0((k + 1)N) =W 0(kN) + ��
N�1X
i=0

�i ~X
i(k)eik

with � = diag(
1; :::; 
2L) and 
j is the inverse of the power

spectrum of the jth entry of the vector
PN�1

i=0 �i ~X
i. Notice

that ~Xi(k) = 1=
p
2(XiT

1 (k)+XiT
2 (k) XiT

1 (k)�XiT
2 (k))T ,

so the transform consists only in replacing the inputs x1 and
x2 respectivly with the sum (x1+x2)=

p
2 and the di�erence

(x1�x2)=
p
2. Now we just have to compute the coe�cients


j . With stationary signals 
1 = ::: = 
L and 
L+1 = 
2L.
So 
1 and 
L+1 determine �. Since the analysis bank is
composed of Losless Perfect Reconstruction �lters ,the com-
ponents ~Xi(k) and ~Xj(k) are uncorrelated for i 6= j. Then,


1 = 2=
PN�1

i=0 �i�
2

xi
1
+xi

2

and 
L+1 = 2=
PN�1

i=0 �i�
2

xi
1
�xi

2

.

So the matrix R0 = �FRF which governs the convergence
of the TD-WSAF is quasi-diagonal with coe�cients close
to one when using stationary inputs. Then, its eigenvalue
spread had been disminished compared to that of R. The
matrix R0 is plotted in (4) for speech signal with L=30,
N=16 subbands and K=2.

In the next table we compare the eigenvalue spread of
the matrices governing the convergence of the four algo-
rithms we considered for a colored noise and a speech sig-
nal. We keep the values L=30 N=16, K=2 of the previous
examples to run the algorithms.

Each part of the algorithm reduces the disparity

LMS TD WSAF TD-WSAF
colored noise 768.4 147.9 95.8 18

speech 7:106 2:38:106 2:103 723.3

Table 1: Condition number for the matrix governing the
convergence of LMS, TD, WSAF and TD-WSAF
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Figure 4: Matrix governing the convergence of the TD-
WSAF for L=30 N=16 K=2

beetween the eingenvalues. When checking how this is ob-
tained, it can be seen that such a result comes from a pre-
and a post- multiplication of the LMS correlation matrix by
appropriate quantities. With a speech signal, the eigenvalue
spread of the matrix �FRF (TD-WSAF) is about 104 times
smaller than the eigenvalue spread of the matrix governing
the convergence of a LMS. The corresponding improvement
in the convergence rate compared to the LMS is illustrated
in the simulation section.

6. WEIGHTS IN NOISY SITUATIONS

When working with speech signals, one usually discovers
that most adaptive algorithms are very sensitive to the vari-
ations of the input power. In some cases, one can observe
a disadaptation in parts of the signal where the energy is
not su�cient, and the global behavior is much worse than
expected from simulations on stationary signals.

The origin of the problem is due to poor signal to noise
ratios in some parts of the reference signal. The remedy
is a time-varying strategy for the adaptation steps of the
TDAF and of the WSAF. Let b(n) be the white noise that
is added to the microphone signal y(n). All signals x1(n),
x2(n), y(n), e(n), b(n) are assumed ergodic and wide-sense
stationnary. Noise and signals are assumed independent.

6.1. Transform Domain algorithm

Denote S(n) = (s1(n):::s2L(n))
T the transformed input

(si(n) is the output of the ith �lter of the transform), �(n) =
�W T (n)S(n) the noiseless error and tn = E[�W T (n)�W (n)]
the expectation of the norm of �W (n), we have:

�W (n+ 1) = (I2L � ��S(n)S(n)T )�W (n) + ��S(n)b(n)

tn+1 = tn � �E[�W T (n)�S(n)�(n)]

��E[�(n)ST (n)��W (n)]) + �2(E[�(n)ST (n)�S(n)�(n)]

+E[b(n)2ST (n)�2S(n)]) (3)

At convergence tn+1 = tn and �2�i = �2�j , 0 � i; j � 2L � 1.
The output of two di�erent �lters are considered uncor-
related. Finally, de�ne ai as E[j�2i (n)jjs2i (n)j] = ai�

2
�i
�2si ,

then (3) becomes,



2L�1X
i=0

�
i(�
i�
2
si
((ai + 2L� 1)�2�i + �2bi)� 2�2�i) = 0

(4)

Assuming that the �lters decorrelate su�ciently the signals,
each term of the sum is zero (the error in the ith subband
is independant of all signals in the others subbands). Ide-
ally, the error �(n) should be an attenuated version of the
microphone signal y(n). Then, we require the power �2�i to

be less than �i�
2
yi
, 0 � �i � 1 leading to:,


i � 2�i

�2si((ai + 2L� 1)�i +
�2
bi

�2yi
)

0 � i � 2L� 1
(5)

In the case of the transform F and of stationary inputs,

1 = ::: = 
L and 
L+1 = ::: = 
2L which reduces the
complexity. The variances �2si , �

2
yi

and �2bi are estimated
with exponential windows.

6.2. WSAF algorithm

The expression of �i in a noisy environment is established
in [2], for a monophonic acoustic echo canceller. The gen-
eralisation to the stereophonic case is straightforward:

4�i � 2ri

L(�2
xi
1
+xi

2

+ �2
xi
1
�xi

2

)(�iri +
�2
bi

�2yi
)

0 � i � N � 1
(6)

where �i and ri are similar to ai and �i in the previous sec-
tion. In this equation the weights �i depend on the signal
to noise ratio. The algorithm is able to slow down the adap-
tation when the reference data are excessively corrupted by
the noise.

7. SIMULATIONS, CONCLUSION

In this section we compare the two-channel LMS algorithm
against the TD-WSAF. The impulse response W1 and W2

to be identi�ed are truncated to L=80 points. They were
measured in an actual teleconference room. The length of
the adaptive �lters is also L=80. The input is a speech sig-
nal. White noise is added to the microphone signal y(n),
the output SNR is 30dB. The TD-WSAF has 64 subbands
and K=2 (MLT). Both algorithms include a stepsize vari-
ation chosen to enable the fastest convergence rate. There
is absolutely no vocal activity detection. Our time-varying
strategy for the steps takes care of this problem. We plot in
�g.5 the microphone signal power to the error signal power
ratio in dB (ERLE) and in �g.6 the square norm of the es-
timation error on the �lters (jj�W (n)jj2). It is seen (�g.6)
that the graph �W (n) versus n decreases much faster for the
TD-WSAF than for the LMS algorithm. The gap beetween
the two graphs is increasing with time. Hence the TD-
WSAF performs a better estimation of the �lters than the
LMS algorithm. Acoustic echo cancellation speci�cations
are usually given in terms of rejection of the echo. Hence
we should concentrate on the lower part of �g.5, when the
rejection is smaller. The TD-WSAF clearly outperforms
the LMS algorithm by several dB in this region (low energy
part of speech). The TD-WSAF seems a good candidate
for stereophonic acoustic echo cancellation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

5

10

15

20

25

30

35

40

45

Samples

ER
LE

 (d
B)

SPEECH L=80 N=64 K=2 SNR=30db

−.− LMS

− TD−WSAF

Figure 5: ERLE for the LMS algorithm and TD-WSAF
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