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ABSTRACT

In this paper we present a numerically robust method for mod-
eling audio signals which is based on a exponential data model.
This model is a generalization of the classical sinusoidal model
in the sense that it allows the amplitude of the sinusoids to
evolve exponentially. We show that, using this model, so-called
attacks can be represented very efficiently and we propose an
algorithm for finding the exponentials in a robust way. More-
over, we show that by using a proper segmentation of the input
data into variable length segments the signal-to-noise ratio can
be drastically improved as compared to a fixed-length analysis.

1. INTRODUCTION

In audio coding, the need for lower bit rates (< 64 kbit/s) is grow-
ing. The emerging MPEG standardization work items will aim at
bit rates well below 64 kbit/s. In the current MPEG-8 overview,
bit rates< 32 kbit/s are proposed. Until now, audio coding re-
search has mainly been focusing ontransparent codingwhere bit
rate constraints are rather mild.

Recently, apart from audio coding schemes delivering a trans-
parent audio quality, other qualifications have gained attention,
among which most notably is themedium qualitycoding scheme.
As opposed to transparent quality, medium quality audio coding
reveals an audible difference between the original and coded sig-
nals, yet any coding artifacts must not be perceived as being annoy-
ing. Current MPEG-4 standardization negotiations [1] are address-
ing the full range of possible bit rates and quality assignments.

Traditionally, audio and speech coding have been two com-
pletely separated areas of investigation. Speech coders, for exam-
ple, are exploiting speech specific features almost to the extreme,
in particular speech coders which are tuned toward dedicated ap-
plications. Examples of such coders include vocoders [2] and si-
nusoidal coders [3]. The latter, however, are less dependent on
data-specific properties and can, therefore, be applied to audio sig-
nals as well. In fact, after some modifications of the classical si-
nusoidal model, this coding technique results in an efficient and
robust representation of audio signals.

This paper is organized as follows. In Section 2 we introduce
the exponential signal model, an extension to the classical sinu-
soidal model. In Section 3 we propose an algorithm for finding
the exponential components. Since this method is not subject to
a stability condition, we investigate in Section 4 the sensitivity of
the final reconstruction to perturbations of the model parameters.
Next, in Section 5, we investigate the segmentation of the input
data in order to represent it with a minimum number of compo-
nents. Finally, in Section 6, we draw some conclusions.

2. EXPONENTIAL MODELING

Sinusoidal coding aims at modeling a signalx as a sum of, sayK,
sinusoids, i.e.,

x̂(n) =
KX
k=1

ak(n) cos(n!k(n) + 'k(n)); (1)

whereak(n), !k(n) and'k(n) are slowly time varying param-
eters, such thatkx � x̂k is minimized for some norm and some
value ofK. Conventional sinusoidal coders divide the signal into
segments and assume the parametersak, !k and'k to be constant
throughout each segment. In reconstructing the signal, overlap-add
or interpolation techniques are used to obtain a smooth transition
of the reconstructed signal at the segment boundaries [3].

Audio signals with so-called “attacks” or “transients”, like the
signal shown in Figure 2a, contain fast variations in amplitude and
cannot be modeled efficiently as a sum of constant-amplitude si-
nusoids. We, therefore, extend the conventional sinusoidal model
by allowing the amplitude to evolve exponentially. To do so, we
introduce a damping coefficient1 k 2 R and define

x̂(n) =
KX
k=1

ake
kn cos(!kn+ 'k)

=

dX
k=1

rk�
n
k ; 0 � n < N; (2)

whererk; �k 2 C . N 2 N is the segment length. The parameter
rk determines the initial phase and amplitude, while�k determines
the frequency and damping. Note thatd = 2K. Equation (2)
expresseŝx(n) as the sum ofd damped (complex) exponentials, in
the remainder of this paper referred to ascomponents. In order to
be able to use this model, we need an analysis method to determine
the parameters(rk; �k) for d components, that together form a
good approximation of a given signal segment.

Signal analysis in conventional sinusoidal coders is based on
Fourier transform methods. The performance of these methods is
not optimal; most notably, they fail to give an accurate frequency
estimation for sinusoids in the low-frequency region [4]. More-
over, the traditional methods take for granted that the sinusoidal
components have a constant amplitude and can, therefore, not be
used to determine the damping coefficients. In the next section
we present a robust analysis method that overcomes the problems
mentioned above.

1The damping coefficientk can be any real number. Positive values
of k , therefore, correspond to expanding amplitudes rather than to truly
damped amplitudes.



3. SIGNAL ANALYSIS

3.1. Ideal signals

Let us first suppose the signalx to be “ideal”, that is, it really is a
sum ofd damped complex exponentials,

x(n) =
dX

k=1

rk�
n
k ; 0 � n < N; (3)

with rk 6= 0 and�i 6= �j ; i 6= j. We can rewrite (3) in matrix
notation as

x(n) = C�n
B;

whereC = (1; : : : ; 1) 2 C
1�d ;� = diag(�1; : : : ; �d) 2 C

d�d

andB = (r1; : : : ; rd)
t 2 C

d�1 . The superscriptt denotes matrix
transposition.

LetH 2 C
m�l , m + l � 1 = N , m > d and l � d, be a

Hankel data matrix built on the signal segmentx,

H =

2
6664

CB C�B � � � C�l�1
B

C�B C�2
B � � � C�l

B

...
...

...
C�m�1

B C�m
B � � � C�m+l�2

B

3
7775 :

It is well known [5] that there exist matricesO 2 C
m�d andC 2

C
d�l ,

O =

2
6664

C

C�
...

C�m�1

3
7775 ; C =

�
B �B � � � �l�1

B
�
;

such thatH = OC. This decomposition is unique up to a sim-
ilarity transformation.O andC are of full rankd since they are
Vandermonde matrices. Hence, rank(H) = d. It is also well
known [5] that� can be computed fromO by exploiting its shift-
invariance structure. Thus, letO" beO without the top row and
O# beO without the bottom row. Then

O#� = O"; (4)

which can be solved for the unknown�.
One way for findingO andC is through singular value de-

composition (SVD). LetH = U�V� be the SVD ofH, where
U 2 C

m�m andV 2 C
l�l are unitary matrices and� 2 Rm�l is

a diagonal matrix with diagonal entries�1 � �2 � : : : � �d > 0
and�k = 0 for k = d + 1; : : : ;min(m; l). The superscript�

denotes matrix transposition and complex conjugation. A suitable
rank-d decompositionH = O0C0 can then be obtained by setting,
for example,O0 = U� andC0 = V�. As stated above, a similar-
ity transformation will transform them intoO andC, from which
the component parameters(rk; �k) can be computed.

3.2. Audio signals

The analysis method given in the previous section assumes that
the signal segment is exactly of the form (3). Audio signals of
reasonable length almost always obey (3) withd � N

2
. From

a coding point of view this number is usually too large and we,

therefore, are interested in an approximation of the signal segment
with a lower number of componentŝd < d.

As we stated above, the number of componentsd in a signal
segment equals the rank of the corresponding Hankel data matrix.
An approximation of the signal segment with a lower number of
components can thus be obtained from a lower rank approxima-
tion ofH. It is well known [6] that the best rank-̂d approximation,
in a least squares sense, of a matrix can be obtained by setting
the smallest singular values equal to zero and leave thed̂ largest
singular values unaffected. However, the resulting rank-d̂ approx-
imation ofH, sayĤ, is not Hankel anymore. As a result,O is
not shift-invariant and no� satisfying (4) does exist. We, there-
fore, determine� as theleast squaresolution to (4). Once we have
found� we have to determineB. For the same reason,B cannot
be taken directly fromC. Instead, given�, we determineB by
solving the least squares problem

min
B

kx� x̂k2:

By inspection of (3), we conclude that this is equivalent to solving

min
B

2
6664

x(0)
x(1)

...
x(N � 1)

3
7775�

2
6664

1 � � � 1
�1 � � � �d̂
...

...
�N�11 � � � �N�1

d̂

3
7775B 2

: (5)

Other methods to obtain a reduced rank approximation of a
signal segment include the Cadzow algorithm [7], which can be
used to determine a rank-d̂ Hankelapproximation ofH, and the
structured total least norm algorithm [8], which can be used to de-
termine a rank-̂d approximation of the signal segment itself, both
in a least square sense. With both methods,� andB can be com-
puted as described in Section 3.1 since the rank-reduced Hankel
matrix in that case does have the shift-invariant structure.

4. SENSITIVITY

Using the procedure described above, we approximate a given sig-
nal segment with a sum of components of the formrk�nk . If
j�kj < 1, the component has a decaying envelope and we will
call such a component a stable component. The analysis described
above is not subject to a stability condition and can thus also out-
put components for whichj�kj > 1. Such components have an
expanding envelope and we refer to them as unstable components.
The names stem from the fact that in the case the segment length is
unbounded, components for whichj�kj < 1 will converge to zero
while components for whichj�kj > 1 will grow unlimited.

In practice components will not in general decay to zero or
expand to infinity, as they are confined to a finite length segment.
However, even with finite length segments, the unstable compo-
nents will be very sensitive to perturbations of�k. An example
that illustrates this sensitivity phenomenon is shown in Figure 1.
In Figure 1a, a segment of a music signal of 160 samples is de-
picted. This signal is approximated with 60 exponentials with the
method described in the previous section. The reconstruction of
the signal using these components is shown in Figure 1b (solid
line) as well as the reconstruction error (dotted line). It is clear
that the reconstruction is almost perfect.

Next we take one of the unstable components and increase the
modulus of the corresponding parameter�k. In our experiment,
we increased one parameter for whichj�kj = 1:06 to j�kj =



1:09. The resulting reconstruction, using the perturbed parameter,
is shown in Figure 1c. It is clear that the reconstruction “explodes”
at the right-hand side boundary which has to be prevented.

The sensitivity to perturbations of unstable components can be
greatly reduced. Before discussing how this can be done, we first
take a closer look to the influence of perturbed parameters on the
final reconstruction.

Let �k = ekej!k , wherek; !k 2 R. The parametersk
and!k are the damping coefficient and frequency, respectively, of
thekth component, which we will denote byxk. If we perturbk,
say0k = k + ", resulting in a perturbed componentx0k, we have
thatx0k(n) = e"nrk�

n
k so that

k�k(n)k1 = kx0k(n)� xk(n)k1

= k(e"n � 1)rk�
n
kk1; 0 � n < N: (6)

Equation (6) shows that, ifj�kj > 1, the error is zero atn = 0
and increases exponentially asn increases, which was illustrated
in Figure 1c. On the other hand, ifj�kj < 1, such problems do
not occur since in that case the error decreases exponentially for
sufficiently largen, assuming thatj"j < jkj.

We can greatly improve the numerical stability of the signal
reconstruction by using an alternative representation for the com-
ponentsxk for which j�kj > 1. This can be seen as follows.

Let pk = rk�
N�1
k , the value ofxk atn = N � 1. We then

can rewritexk as

xk(n) = rk�
n
k (7)

= rk�
N�1
k �n�N+1

k

= pk�
n�N+1
k ; 0 � n < N: (8)

In fact, (8) is a backward description ofxk whereas (7) is a forward
description ofxk. With (8), the errork�k(n)k1 becomes

k�k(n)k1 = kx0k(n)� xk(n)k1

= k(e"(n�N+1) � 1)pk�
n�N+1
k k1

= k(e"(n�N+1) � 1)rk�
n
kk1; 0 � n < N:

In this case, ifj�kj > 1, the error doesnot increase exponentially
asn increases but becomes zero atn = N � 1. In fact, by time-
reversing the data we turn unstable components into stable ones
and vice versa. This means that we can significantly improve the
numerical stability of the overall reconstruction by choosing dif-
ferent representations for different components; ifj�kj � 1 we
use the forward description (7) whereas ifj�kj > 1 we use the
backward description (8). This procedure guarantees us thatall
components can be regarded as being stable, which is of great im-
portance whenN is large, as is the case with high-quality audio
signals (typicallyN > 500 for 44.1 kHz sampled audio).

Back to our experiment, Figure 1d shows the result of recon-
structing the audio signal of Figure 1a using the two different com-
ponent representations (solid line) together with the corresponding
reconstruction error (dotted line). This signal is reconstructed with
the same parameters as the ones used to reconstruct the signal of
Figure 1c, that is, including the perturbed parameter�k. It is ob-
vious that the reconstruction error has been reduced significantly.

The analysis procedure does not change by allowing the two
representations. To see this, assume thatj�1j; : : : ; j�j j � 1 and
j�j+1j; : : : ; j�d̂j > 1. If we letD = diag(1; : : : ; 1; �1�Nj+1 ; : : : ;

�1�N
d̂

) 2 C
d̂�d̂ and defineV� as

V� =

2
6664

1 � � � 1
�1 � � � �d̂
...

...
�N�11 � � � �N�1

d̂

3
7775 ;

the minimization problem (5) can be formulated as

min
B

kx�V�Bk2 = min
B0

kx� (V�D)B
0k2;

whereB0 = D
�1
B = (r1; : : : ; rj ; pj+1; : : : ; pd̂)

t and x =
(x(0); : : : ; x(N � 1))t. Hence, rather than finding the parame-
ters r1; : : : ; rd̂, we now find the parameterrk if j�kj � 1 and
pk if j�kj > 1. Note that, in coding or transmission applications,
we do not have to code or transmit additional data for discriminat-
ing between both representations at the decoder c.q. receiver. If
j�kj � 1 we use the forward representation, otherwise we use the
backward representation.

5. SEGMENTATION

One of the main problems in audio coders is how to handle so-
called “attacks” or “transients”. With the exponential modeling,
these attacks can be represented very efficiently. The reason for
this is that attacks can almost perfectly be described as the impulse
response of a linear time-invariant system, which is of the form (3)
with j�kj � 1 for all k.

In order to model these attacks with a minimum number of
components, it is important that the attack starts atn = 0. If this
condition is not satisfied, we have to model the signal with con-
siderable more components, the additional components needed to
compensate for the samples preceding the attack. This is illus-
trated by Figure 2. Figure 2a shows a recording of the attack of
a castanet. Figure 2c shows the same signal, shifted in time. Fig-
ures 2b and 2d show the reconstruction of these two fragments
usingd̂ = 32 components. The SNR of the reconstruction of Fig-
ure 2b is 13.8 dB, while Figure 2d has a SNR of 26.0 dB. We,
therefore, conclude that it is important to split up the input data
into segments which can be modeled with low-order systems. As
a consequence, the start points of the analysis windows, as well as
the length, must be variable.

One way of finding a (possible) split point within a data seg-
ment is to divide the segment in two parts, and model each part
with an equal number of componentŝd=2. Since both parts are
modeled with a fixed number of components, regardless of their
respective lengths, the SNR tends to have an optimum for a split
point near the middle of the segment. However, if the segment
contains an attack, the optimal split point will be located at the be-
ginning of the attack. The optimal split point found this way is then
taken as the boundary of the next segment, and so forth. The pro-
cedure is illustrated in Figure 3 for one single segment. Figure 3a
shows a segment of 320 samples of a recording of a castanet, sam-
pled at a rate of 8 kHz. The signal is split in two parts where both
parts are modeled with 32 components (d̂ = 64). Figure 3b shows
the SNR in the reconstruction of this signal versus the location of
the split point. As we see, the optimal split point aligns well with
the attack.

It is impractical to determine the optimal split point by trying
each split point in between the start and the end of the segment,
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Figure 1:a) Fragment of a music signal, b) reconstruction using 60
components (solid line) and reconstruction error (dotted line), c)
reconstruction with perturbed parameter�k, and d) correspond-
ing reconstruction using forward and backward representation.

since this would require2N Hankel decompositions for each seg-
ment. Instead we use a two-step approach. In the first step, the
SNR for a few split points is computed in order to roughly locate
the optimal split point. In the next step, some split points around
the optimal one are computed to more accurately determine the
optimal position.

We have used this procedure for the segmentation of a few
seconds recording of the castanet, containing several attacks. We
used an analysis frame of lengthN = 320 andd̂ = 64. The result-
ing mean segment length is 168 and the resulting SNR, measured
over the entire signal, is 20.5 dB. If we do the same experiment for
a fixed length window of 160 samples (using 32 components per
frame), the resulting SNR is only 12.9 dB. We, therefore, conclude
that proper segmentation results in a potentially large improvement
of SNR for signals containing attacks.

6. CONCLUSIONS

We have investigated the modeling of audio signals with complex
exponentials. We showed that such modeling can very efficiently
represent attacks in the audio signal, one of the main bottlenecks
in state of the art audio coders. We presented a numerically ro-
bust algorithm for determining the exponential components and
showed that, by using a proper segmentation of the input data, the
total number of components needed for the reconstruction can be
significantly reduced as compared to a fixed-length analysis.

7. REFERENCES

[1] ISO/IEC JTC1/SC29/WG11 N1730, Overview of
the MPEG-4 Standard. Stockholm, July 1997.
http://drogo.cselt.stet.it/mpeg/standards/mpeg-4.htm.

[2] W.B. Kleijn and K.K. Paliwal, editors. Speech coding and
synthesis. Elsevier Science Publishers, Amsterdam, 1995.

[3] R.J. McAulay and T.F. Quatieri. Speech analysis/synthesis

(a) 0 50 100 150

(b) 0 50 100 150

(c) 0 50 100 150

(d) 0 50 100 150

Figure 2:a) Recording of a castanet signal, b) reconstruction with
32 components (solid line) and reconstruction error (dotted line),
c) recording of the (time shifted) castanet signal, and d) recon-
struction of c) with 32 components (solid line) and reconstruction
error (dotted line).

(a) 0 50 100 150 200 250 300

(b)
0 50 100 150 200 250 300

10

20

30

split point

S
N

R
 (

dB
)
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