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ABSTRACT on the unit circleT. For any functionF defined on the unit cir-
_ _ _ _ _ ~ cleT, let||F||ze = sup{||F(2)] : |2| = 1}. The spacd;%,
This paper introduces a generallzed Schur algorlthm in the Krein is the set of all measurabp X q matrix valued functions with

space with an indefinite inner product. Concepts such as Carath|F|| - < oco. The subspacéi s, is the set of allF € L35,
eodory classes and Schur classes used in the classical Schur ajyith bounded analytic continuation to the unit dBkThe linkage

gorithm cannot be applied in the Krein space since the positive- petween a rational transfer matrix and its state-space realization
definiteness corresponds merely to the nonsingularity in the Krein [A, B,C, D] will be denoted by

space. We note also that these problems appear when fast algo-
rithms for suboptimalH* filtering are implemented. We shall [A,B,C,D] (2) = C(z'I-A)"'B+D, (1)
derive the extended Chandrasekhar algorithm which is a fast im-
plementation off > filtering, and explain the connection between \whereA € C***, B € C"*", C € C™"*", andD € C™*",
the generalized Schur algorithm and the Chandrasekhar algorithmm the Comp|ex ana|ysis and approximation theory’ the Concepts
Using this result it is possible to derive a fast algorithm for subop- of the Caratheodory class and the Schur class are introduced in
timal H* filtering. the Hilbert space [3, 4, 5]. We shall extend these concepts in the
Krein space which is an extended space of the Hilbert space. A
d x d matrix functionF'(z) is said to be in the Caratheodory class
C in the Hilbert space if'(z) is analytic in the open unit disk and
(F + F)/2 is nonnegative definite in this domain.

Let’s consider the forms of rational matrix functions which ap-
pear in many applications such as Kalman filtering, control theory
and H* optimization problems. Define a matrix

1. INTRODUCTION

The Riccati equation approach for solving tHe° optimal con-

trol problem has recently emerged in [7, 13]. The same technique
has been applied to solve thE™ filtering problem[6, 8, 13]. This
equation is different from the classical Riccati equation derived
from the Kalman filtering ot problems [6, 7] since the equa- Q L
tions have the indefinite structure. It is well-known that there are Y= {L* R] ,
fast algorithms such as Chandrasekhar-type algorithms, which are

closely related to the Schur algorithm [10, 11]. We note that when \yhere) is ap x p matrix, R is aq x ¢ matrix, andL is ap x ¢

fast algorithms forH > filtering are derived by using the similar  5trix. Consider a rational matrix function of the form
concepts as classical Schur algorithms, they have different struc-

tures because of the lack of positive-definite properties. We extend
the Schur algorithm in the Krein space which can be applied to
the H*° filtering problems. We derive an extended Chandrasekhar
algorithm and explain the connection between the extended Chan-The rational matrix valued functiofiy, is called the Popov func-
drasekhar algorithm and the generalized Schur algorithm. tion [9] associated t&. In the Kalman filtering problem an#®

Let us introduce some basic notations and concepts used inProblem, the form of Popov functions is a little different from those
this paper. The regiorB, E, andT denote, respectively, the open N H** filtering. Specifically the matriit is nonnegative definite
unit disk set, the open set outside the unit circle, and the unit cir- in H filter, but it is not in H* filtering. In these problems, it is

)

My = [C7 (2T — A7)~ 1]2{(Z_II}A)_IC]. 3

cle. For each rational matrix valued functidh(z), H denotes  important to derive thg-spectral factorization of the Popov func-
fI(z) — H*(»!) where is a complex matrix conjugate. An _tlon_Hg._We shall denye a fast algorlth_m of thbspectr_al fact_or-
inner product space is a complex vector speasith a complex- ization V|a_the gener_allze(_j _Schu_r algprlthm z_;md explain the linkage
valued function(-,-) : V x V ~ C such that{af + bg,h) = between it and the indefinite Riccati equation or Chandrasekhar-

a{f, h) + b(g, h) (linearity), and(f, g) = (g, f)* (symmetry) for Y€ algorithms inFf* filtering.

any f,g € V and for any scalat,b. The Krein space is an in-

ner product spack over complex field with the above mentioned 2. ELEMENTARY FACTORS IN KREIN SPACES

condition. See [15] for details. In the Hilbert space, the positivity

of (f, f) for all f € V is added in the above condition. We now We shall introduce a few basic properties of the elementary
introduce some notations and terminologies for functional spaceslossless factors and the elementary Blaschke matrix factor which



will be used in the sequel in the Krein space. In the Hilbert space
these factors are well-known, but since some properties of the

Hilbert space factors cannot be inherited to the Krein space the
new factors should be expanded. To begin with, we shall general-

ize the concept of thé-unitariness in the Krein space.

Definition 2.1. For given diagonal matrice$, and.J> with 1 or
—1 on the diagonal, a matri¥ is (J1, J2)-unitary matrix iftU™* J, U
= J>. Moreover, ifJ; = J», thenU is J;-unitary.

Let K denote a Krein space such tHat-) inner product ofC
satisfies(vy, v2) = (Jui,v2) for anyv;,v2 € K whereJ is a
signature matrix ang, -) is an inner product of the Hilbert space
|K|. We define a matrix conjugatd™ of A in the Krein space
such thatA* = JA*J, whereJ is a signature matrix, since for
anyvi,v2 € K, A satisfies thatAvi, v2) = (v1, JA™ Jv2) where
* iS a matrix conjugate in Hilbert space. Define a signature matrix
Ju such that/; = J & —J where stands for the direct sum. For
any given matrixw, we derive aJ;-unitary matrix with respect to
w as follows. Definel (w) such that

whereM; satisfy that/ —w* Jw = M{.JM; andJ —JwJw*J =

M; JM,. We cancheckeasilythaf w*]U =[X O]. Con-
sider the block matrip defined by

|

where A, B,C and D aren x n matrices. We define a homo-
graphic transformation acting anx n matricesX by

Mt
O

0
Myt

I

—w

—w

H(w) = | ; @

A B

C D] ®)

X — L(X) = (AX + B)(CX + D)™, (6)

whereC'X + D is nonsingular.

Theorem 2.1. Let L be a2n x 2n J;-unitary matrix andw is
chosen such thal — w*Jw and J — JwJw™ J are nonsingular.
Assume thal.(w) is a homographic transformation acting en
ThenL(w)*L(w) — I and L(w)L(w)* — I are nonsingular.
Proof. Assume thaf — ww™ is nonsingular. Note that

I— L(w)"L(w) = J{J — L(w)" JL(w)} @
= J(Aw + B)" ' (—w" Jw + J)(Aw + B) "

*

|

HenceL(w)* L(w)—1I is nonsingular. The proof df(w)L(w)
I is similar.

Let’s consider a classical result of the Blaschke product and the
matrix-valued Blaschke factor in the Krein spaces. It is well-
known in complex analysis, circuit theory and interpolation theory
that the convergence of the infinite Blaschke product is related to
the convergence of the Nevanlinna-Pick interpolation [1, 2, 12].
Let's define a Blaschke factor of the forég(z) = E—'%
The matrix valued Blaschke factor is definedYiy= J @ ¢, 'J
where.J is a signature diagonal matrix. Now we shall consider the
Ji-losslessness in the Krein space2# x 2n matrix 6 is said to

be J;-lossless in the Krein spaceffis analytic in the unit disk
and.J;-unitary on the unit circlér.

3. THE J-SPECTRAL FACTORIZATION USING A
GENERALIZED SCHUR ALGORITHM

We note that one of the properties of Caratheodory classes cannot
be used in the Krein spaces because the positive-definite property
doesn’'t apply. The positive-definiteness is relaxed to the singu-
larity in the Krein spaces. This fact has been noted by many re-
searchers who have studied tH€® optimization, theJ-spectral
factorization and the indefinite metric spaces [6, 8, 9, 14]. Let's
considerI(z) defined by

I(z) = F(2) + F(2), 8)
whereF'(z) is analytic inE with F'(0) = J, and.J is the signature
diagonal matrix. Without loss of generalit,(0) can be normal-
ized asF'(0) = J if F'(0) is nonsingular. We shall try to find the
J-spectral factor of the foril(z) = G(z)JG(z) whereG~(z)
is analytic inD. A recursiveJ-spectral factorization algorithm can
be derived similarly to the classical tangential Schur algorithm.

Algorithm 3.1. Assume that the initial graph functign(z) is de-

o) = (R

Then it is easy to check that satisfiedI(z) = g1 (z)J1g1(z) and
that N1 (0) = O. Assume that for each s = 1, 2;-, the graph
functionsg, are defined in the forp, = [D;  N;]" . We define
¢s such that

J+ F(z)
J—F(z)

9)

01(2) 9

Nl(Z)

(2). (10)

¢s = lim 27 ' Ny(2)D; "
z—0

With H(c,) in (4), by the next step of the recursion can be com-
0

puted by
_ | Dst1
z_lJ] s = {NS“] ’

whereN;41(0) = O. By continuing the recursiorys converges
to[G* O] ass— o0

J

gs+1 = H(cs) [O (11)

In order to continue the recursion each graph funcgioshould
have the proper property. In classical Nevanlinna algorithms, it is
called to be admissible ij; are analytic matrices iB, D; is non-
singular inD, and N,D; ' is a contractive matrix in th&®. In
Krein spaces the third property is relaxed to the nonsingularity. It
is well-known thatgs converges t({G* O]* in Hilbert spaces.
We are also able to prove similar convergence theorems [16] in the
Krein space.

In Kalman filter, H>°-filter and control theory, a rational ma-
trix valued functionIIs(z) called the Popov function associated
to X is defined as in (3) after settig (z) = C*(2I — A)~ . In
these problems, it is important to obtain the spectral factorization
of the Popov functioils. We note that the Popov functidiis;
can be decomposed into the form of Caratheodory classes.(Here
and R in ¥ are positive-definite in the classical theory, but in the
Krein space it isn’'t necessary.

Lemma 3.1. Define Popov functioflls; as in (3) and assume that
there is a solutionP of the Lyapunov equation of the form

P=APA" +Q (12)



where A is asymptotical stable, i.e., all of the eigenvalues4of
are in the unit disk, and) is a symmetry matrix. TheHs can
be decomposed as in (8). Moreover, if we assume Fa) =
[4, B, C, D] (2) is defined as the equation (1), thdnB, C, and
D has the following forms:

R+C"PC

A=A B=CPA+L,C=0CD= (13)

Proof. First, change the ternf? — AP A™ of (12) by adding the
termsz] — A, z 1T — A* such that

P — APA" =(zI — A)P(z™"'T — A%) 14
+ AP(z 'T— A*) + (2I — A)PA".

Replace@ of the right side of the equation (12) by the equation
(14) and reformulat&ls such that

Os(z2) =R+ C(zl —A) 'L+ L (z"'T—A)"'C" +

CPC* 4+ C(zI — A)""APC* + CPA*(z7'T — A")™'C.
(15)

HenceF (z) satisfies the equation (13). |

In result, we can transform a Popov functids to a Caratheodory

well-known that.J-spectral factorization problems appear in the
H*° control theory, the game theory add™ suboptimal filter-
ing problem [7, 8, 13]. We shall apply the results of the previous
sections to théZ*>° suboptimal filtering problem.

Let's review the standard system model for the optimal filter-
ing problem.

1. Signal generation: consider a time invariant state space
model of the form

z(i + 1) = Az (i) + Bw(z) (18)
y(i) = Oz (i) + Dw(i) (19)
2(3) = La (i) (20)

fori =1,2,--- wherez(t) € R" is the statew(i) € R?
is the disturbance of noisgyi) € RP? is the observation
signal andz(:) € R™ is the output of interest.

2. Filtering: The results of the optimal filtering is described
by:
Z(i+1) = Az(0) + Kp, (y(i) — Ci(7))
2(i) = Lz(i)

(21)
(22)

wherez (i) € R"™ is the estimated state andi) € R™ is
the estimated output after filtering.

form. Now we shall derive a state-space interpretation of the Schurin the H* suboptimal problem, our aim is to find an estimate of

recursion. LetD = MJM*. By multiplying M~', M*~" on
both side ofF'(z), we can normalizé”(z). Hence without loss
of generality, we can seF(z) = [A,B,C,J](2), Di(z) =
[4,B,C,2J] (2) andNi(z) = [A, B,C, 0] (2) in (9). Let's re-

z inthe form2 = Fy such that|R||.. < + for some giveny
whereR is a function of the form :R : w — z — 2. The state-
space based Riccati difference equationfy, filtering problem
similar to that which occurs in Kalman filtering, is introduced in

view the basic operations of the state-space realization which arel. 8, 13]. The Riccati difference equation with stabilizing solution

needed in the recursive procedure. Assume HatB, C, D] (z)
is a state-space realization representation. Let’s ddfjfie) =
[Ai, Bi, Ci, Ds] (z) for eachi = 1,2. Then the following prop-
erties are satisfied:

1. F{'(2) = [A1 — B.D{'Cy, BiD;', D{'Cy, DT (=),

2. if F(z) = [A,B,C,0] (2),
thenz~'F(z) = [A, BA,C,CB] (z).

P, is defined as

See [13] for details. Using these operations it is possible to obtain with

the following theorem.

Theorem 3.2. Assume that the initial graph functiog is de-
fined byg: = [(J+F)* (=J+ F)*]". Assume thay, =
[Di
the form of state-space representationas(z) = [A, Ag, Ck, Q]
(z) and Ni.(2) = [A4,T%, Ck, O] (2). LetH (cy) be defined as in
(4). ThenAy, Q. andT';, satisfy :

J 0]
gk+1 = H(Ck) [O z_lJ] Gk, (16)
Qi1 Apg1| _ Q. Ag
{ ot L =HE | oph| an

4. AN APPLICATION OF THE SCHUR ALGORITHM TO
THE H®°-FILTERING PROBLEM

In previous sections, the generalized Schur recursion has been pro-
posed in indefinite metric spaces and we have shown that the Schur

algorithm is related to thg-spectral factorization problem. It is

N,j] * derived by the Schur recursions can be expressed in

Piy1 = BIB" + AP A" — My S My (23)
fork =1,2,---, whereX(k) and M (k) are defined as
Y = DJD* +CP.C” (24)
My, = BJD* + AP,C" (25)
- A B O
[4 ]?] =|[L] [0 ~I (26)
¢ D c| |p o

andJ = I $ —I. Now we shall define a Popov function related to
H, filtering problems. As in the Kalman filtering problem where
a Popov function is given in the form of the power spectrum of
the stochastic procegs and is derived from the Riccati equation,
in H., filtering problem a Popov function is given in the form of
the quasi power spectrum ¢f(k)*  z(k)*]". We will derive
the Popov functiordls in the H*° filtering problem by using the
asymptotic solution of the Riccati difference equation.

Theorem 4.1. Assume thad/},, X, and P, converge taV/, ¥ and
P whenn — oco. Let's defineQ = BB*, R = BD* andR =
DD* and defineSy and R such that

Sp=[0 $]

—*I O
Rf:{g R].

@7)

(28)



Define the transfer functiofV.(z) and the gainK; such that
We(z) = C(27'T — A"t and K; = MX™'. Then the Popov
function satisfies that

I=W.QW. + SfW; +W.Ss + Ry

= (I + W.K;)S(I + K;W7). (29)

Moreover, if we se¥'(z) = I + W.(z)Ky, thenY ! is analytic
inE.

Proof. Asn — oo, the solution of the Riccati difference equation

satisfies:

P—APA* =Q - M 'M". (30)

The left side of (30) can be replaced by (14), and then be pre-

and post- multiplied byW.(z) and W.(z), respectively. From

CPC* = ©—R; andAPC* = M — Sy, and hence substituting,
we obtain (29). And itis easy to check that the right side of (29) is

analytic. |

Finally, a Popov function fofd > suboptimal filtering is derived
of the form

I(z) = [We(z) 1] [Q Sf] [Wc(z)].

Si Ry | 1 (31)

The middle term of the left side of (31) agrees wiilof a Popov

function of (2). Note thatR; is an indefinite matrix. Hence by

using the generalized Schur algorithm fbspectral factorization,

Y and Ky can be derived. As Kalman filtering, we can formulate

a Chandrasekhar or a square-root £6t° filtering. Let P;, be the
solution of the difference Riccati equation (23) with = P Let
Wi JW; = {CP.C* + R;} and Ly, = {AP,C* + S}W, "
Thenfork =1,2,---, Wi, L and Py, satisfy the properties :

Wis1 JWip1 = Wi Wi + C(Peyr — P)C (32)
L1 JWis1 = Ly JWy + A(Peyr — P)CT (33)
Piio— Piy1) + L JL;
(Prt2 — Pet1) + Lig1J Ly s (24)

= A(Pk+1 — Pk-)A* + LkJLZ

From (32,33,34), following theorem can be proved immediately.

Theorem 4.2. LetW,, and L, be as givenin (32,33,34). SBt1—

P, = —TI',JT';, whereP, is the solution of the Riccati equation.
can be computed recur-

ThenWy, L, andT'y, fork = 1,2,---
sively using the array

2]l Bl

Liy1 Thyr| | Lk ATy (35)

whereU is J;-unitary.

5. CONCLUSION AND DISCUSSION

enables us to obtain fast algorithms Je spectral factorization

problems or suboptimdf *°- filtering. Since the generalized Schur
algorithm in the Krein space has different structures from the clas-
sical Schur algorithm, we also explore some problems in the un-

derlying structure. Our new algorithm can be applied to Hf&
filtering problems and/-spectral factorization problems.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]
We propose a generalized Schur algorithm in the Krein space which

(16]

6. REFERENCES

P. DEWILDE AND H. DyMm, “ Lossless chain scattering ma-
trices and optimum linear prediction : The vector case ”, Cir-
cuit Theory Appl., vol. 9, pp. 137-175, 1981.

P. DEWILDE AND H. Dym, “Schur recursions, error for-
mulas, and convergence of rational estimators for station-
ary stochastic sequences ", IEEE Trans. Inf. Theory, vol. IT-
27(4), pp. 446-461, 1981.

“ The

PH. DELSARTE, Y. GENIN, AND Y. KAMP,
Nevanlinna-Pick problem for matrix-valued functions 7,
SIAM J. Appl. Math, 36, pp. 47-61, 1979.

T. T. GEORGIOU AND P. P. KHARGONEKAR, “Spectral
factorization of matrix-valued functions using interpolation”,
IEEE Trans. Circuits and Systems, vol. CAS-36(4), pp. 568—
574, 1989.

C. CHANG AND T. T. GEORGIOU, “On a Schur-algorithm
based approach to spectral factorization: Connection with
the Riccati equation”, Linear Algebra Appl., vol. 171,
pp. 233-247, 1992.

M. J. GRIMBLE, “Polynomial matrix solution of théd, fil-
tering problem and the relationship to Riccati equation state-
space results”, IEEE Trans. Signal Processing, vol. 41(1),
pp. 67-81, 1993.

J. C. DoYLE, K. GLOVER, P. P. KHARGONEKAR, AND
B. A. FRANCIS, “State-space solution to standafth and
H, control problems”, IEEE Trans. Automat. Contr., vol.
34, pp 831-847, 1989.

K. M. NAGPAL AND P. P. KHARGONEKAR, “Filtering and
smoothing in and *° setting”, IEEE Trans. Automat. Contr.,
vol. 36, pp. 152-166, (1991).

V. loNEscuy M. WEIss “Continuous and discrete-time
Riccati theory : A Popov-function approach”, Linear Alge-
bra Appl., vol. 193, pp. 173-209, 1993.

A. H. SAYED, T. KAILATH, AND H. LEV-ARI , “Gen-
eralized Chandrasekhar recursions from the generalized
Schur algorithm”, IEEE Trans. Automat. Contr., vol. 39(11),
pp. 2265-2269, 1994.

B. HAssiBI, “Indefinite metric spaces in estimation, con-
trol and adaptive filtering”, PhD. Dissert. Dep. Elect. Eng.,
Stanford Univ., 1996.

N. YOUNG, “An introduction to Hilbert space”, Cambridge,
New York 1988.

M. GREEN AND D. J. N. LIMEBEER, “Linear robust con-
trol”, Prentice Hall, New Jersey, 1995.

I. GOHBERG, “Orthogonal matrix-valued polynomials and
applications”, Operator Theory, advance and application,
vol. 34 1988.

I. GOHBERG, P. LANCASTER, AND L.RODMAN, “Matrices
and indefinite scalar product”, Operator Theory, advance and
application, vol. 8, 1983

K. KiM AND J. CHUN, “A Convergence proof of the tangen-
tial Schur algorithm in Krein space”, to be submitted, 1997.



