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ABSTRACT

This paper introduces a generalized Schur algorithm in the Krein
space with an indefinite inner product. Concepts such as Carath-
eodory classes and Schur classes used in the classical Schur al-
gorithm cannot be applied in the Krein space since the positive-
definiteness corresponds merely to the nonsingularity in the Krein
space. We note also that these problems appear when fast algo-
rithms for suboptimalH1 filtering are implemented. We shall
derive the extended Chandrasekhar algorithm which is a fast im-
plementation ofH1 filtering, and explain the connection between
the generalized Schur algorithm and the Chandrasekhar algorithm.
Using this result it is possible to derive a fast algorithm for subop-
timalH1 filtering.

1. INTRODUCTION

The Riccati equation approach for solving theH1 optimal con-
trol problem has recently emerged in [7, 13]. The same technique
has been applied to solve theH1 filtering problem[6, 8, 13]. This
equation is different from the classical Riccati equation derived
from the Kalman filtering orH2 problems [6, 7] since the equa-
tions have the indefinite structure. It is well-known that there are
fast algorithms such as Chandrasekhar-type algorithms, which are
closely related to the Schur algorithm [10, 11]. We note that when
fast algorithms forH1 filtering are derived by using the similar
concepts as classical Schur algorithms, they have different struc-
tures because of the lack of positive-definite properties. We extend
the Schur algorithm in the Krein space which can be applied to
theH1 filtering problems. We derive an extended Chandrasekhar
algorithm and explain the connection between the extended Chan-
drasekhar algorithm and the generalized Schur algorithm.

Let us introduce some basic notations and concepts used in
this paper. The regionsD ; E; andT denote, respectively, the open
unit disk set, the open set outside the unit circle, and the unit cir-
cle. For each rational matrix valued functionH(z), ~H denotes
~H(z) = H�(z�1) where� is a complex matrix conjugate. An
inner product space is a complex vector spaceV with a complex-
valued functionh�; �i : V � V 7! C such thathaf + bg; hi =
ahf; hi+ bhg; hi (linearity), andhf; gi = hg; fi� (symmetry) for
any f; g 2 V and for any scalara; b. The Krein space is an in-
ner product spaceV over complex field with the above mentioned
condition. See [15] for details. In the Hilbert space, the positivity
of hf; fi for all f 2 V is added in the above condition. We now
introduce some notations and terminologies for functional spaces

on the unit circleT. For any functionF defined on the unit cir-
cleT, let kFkL1 = supfkF (z)k : jzj = 1g. The spaceL1p�q
is the set of all measurablep � q matrix valued functions with
kFkL1 < 1. The subspaceH1

p�q is the set of allF 2 L1p�q
with bounded analytic continuation to the unit diskD . The linkage
between a rational transfer matrix and its state-space realization�
A;B;C;D

�
will be denoted by

�
A;B;C;D

�
(z) = C(z�1I �A)�1B +D; (1)

whereA 2 C
n�n , B 2 C

n�r , C 2 C
m�n , andD 2 C

m�r .
In the complex analysis and approximation theory, the concepts
of the Caratheodory class and the Schur class are introduced in
the Hilbert space [3, 4, 5]. We shall extend these concepts in the
Krein space which is an extended space of the Hilbert space. A
d� d matrix functionF (z) is said to be in the Caratheodory class
C in the Hilbert space ifF (z) is analytic in the open unit disk and
(F + ~F )=2 is nonnegative definite in this domain.

Let’s consider the forms of rational matrix functions which ap-
pear in many applications such as Kalman filtering, control theory
andH1 optimization problems. Define a matrix

� =

�
Q L
L� R

�
; (2)

whereQ is ap � p matrix,R is aq � q matrix, andL is ap � q
matrix. Consider a rational matrix function of the form

�� =
�
C�(zI �A�)�1 I

�
�

�
(z�1I �A)�1C

I

�
: (3)

The rational matrix valued function�� is called the Popov func-
tion [9] associated to�. In the Kalman filtering problem andH2

problem, the form of Popov functions is a little different from those
in H1 filtering. Specifically the matrix� is nonnegative definite
in H2 filter, but it is not inH1 filtering. In these problems, it is
important to derive theJ-spectral factorization of the Popov func-
tion��. We shall derive a fast algorithm of theJ-spectral factor-
ization via the generalized Schur algorithm and explain the linkage
between it and the indefinite Riccati equation or Chandrasekhar-
type algorithms inH1 filtering.

2. ELEMENTARY FACTORS IN KREIN SPACES

We shall introduce a few basic properties of the elementaryJ-
lossless factors and the elementary Blaschke matrix factor which



will be used in the sequel in the Krein space. In the Hilbert space
these factors are well-known, but since some properties of the
Hilbert space factors cannot be inherited to the Krein space the
new factors should be expanded. To begin with, we shall general-
ize the concept of theJ-unitariness in the Krein space.

Definition 2.1. For given diagonal matricesJ1 andJ2 with 1 or
�1 on the diagonal, a matrixU is (J1; J2)-unitary matrix ifU�J1U
= J2. Moreover, ifJ1 = J2, thenU is J1-unitary.

LetK denote a Krein space such thath�; �i inner product ofK
satisfieshv1; v2i = (Jv1; v2) for any v1; v2 2 K whereJ is a
signature matrix and(�; �) is an inner product of the Hilbert space
jKj. We define a matrix conjugateA? of A in the Krein space
such thatA? = JA�J; whereJ is a signature matrix, since for
anyv1; v2 2 K,A satisfies thathAv1; v2i = hv1; JA

�Jv2iwhere
� is a matrix conjugate in Hilbert space. Define a signature matrix
J1 such thatJ1 = J ��J where� stands for the direct sum. For
any given matrixw, we derive aJ1-unitary matrix with respect to
w as follows. DefineH(w) such that

H(w) =

�
M�1

1 O
O M�1

2

�
�

�
I �w?

�w I

�
; (4)

whereMi satisfy thatJ�w�Jw =M�
1 JM1 andJ�JwJw�J =

M�
2 JM2. We can check easily that

�
I w�

�
~U =

�
X O

�
. Con-

sider the block matrixL defined by

L =

�
A B
C D

�
(5)

whereA;B;C andD aren � n matrices. We define a homo-
graphic transformation acting onn� n matricesX by

X 7�! L(X) = (AX +B)(CX +D)�1; (6)

whereCX +D is nonsingular.

Theorem 2.1. Let L be a2n � 2n J1-unitary matrix andw is
chosen such thatJ � w�Jw andJ � JwJw�J are nonsingular.
Assume thatL(w) is a homographic transformation acting onw.
ThenL(w)?L(w)� I andL(w)L(w)? � I are nonsingular.

Proof. Assume thatI �ww? is nonsingular. Note that

I � L(w)?L(w) = JfJ � L(w)�JL(w)g

= J(Aw +B)�
�1
(�w�Jw + J)(Aw +B)�1:

(7)

HenceL(w)?L(w)�I is nonsingular. The proof ofL(w)L(w)?�
I is similar.

Let’s consider a classical result of the Blaschke product and the
matrix-valued Blaschke factor in the Krein spaces. It is well-
known in complex analysis, circuit theory and interpolation theory
that the convergence of the infinite Blaschke product is related to
the convergence of the Nevanlinna-Pick interpolation [1, 2, 12].
Let’s define a Blaschke factor of the form�s(z) = jzsj

zs

zs�z
1�zsz

:

The matrix valued Blaschke factor is defined byYs = J � ��1a J
whereJ is a signature diagonal matrix. Now we shall consider the
J1-losslessness in the Krein space. A2n � 2n matrix � is said to
beJ1-lossless in the Krein space if� is analytic in the unit diskD
andJ1-unitary on the unit circleT.

3. THE J-SPECTRAL FACTORIZATION USING A
GENERALIZED SCHUR ALGORITHM

We note that one of the properties of Caratheodory classes cannot
be used in the Krein spaces because the positive-definite property
doesn’t apply. The positive-definiteness is relaxed to the singu-
larity in the Krein spaces. This fact has been noted by many re-
searchers who have studied theH1 optimization, theJ-spectral
factorization and the indefinite metric spaces [6, 8, 9, 14]. Let’s
consider�(z) defined by

�(z) = F (z) + ~F (z); (8)

whereF (z) is analytic inE with F (0) = J , andJ is the signature
diagonal matrix. Without loss of generality,F (0) can be normal-
ized asF (0) = J if F (0) is nonsingular. We shall try to find the
J-spectral factor of the form�(z) = ~G(z)JG(z) whereG�1(z)
is analytic inD . A recursiveJ-spectral factorization algorithm can
be derived similarly to the classical tangential Schur algorithm.

Algorithm 3.1. Assume that the initial graph functiong1(z) is de-
fined by

g1(z) =

�
J + ~F (z)

J � ~F (z)

�
=

�
D1(z)
N1(z)

�
: (9)

Then it is easy to check thatg1 satisfies�(z) = ~g1(z)J1g1(z) and
that N1(0) = O. Assume that for each s = 1, 2,� � � , the graph
functionsgs are defined in the formgs =

�
D�s N�

s

��
: We define

cs such that

cs = lim
z!0

z�1Ns(z)D
�1
s (z): (10)

WithH(cs) in (4), by the next step of the recursion can be com-
puted by

gs+1 = H(cs)

�
J O
O z�1J

�
gs =

�
Ds+1

Ns+1

�
; (11)

whereNs+1(0) = O. By continuing the recursion,gs converges
to
�
G� O

��
ass!1

In order to continue the recursion each graph functiongs should
have the proper property. In classical Nevanlinna algorithms, it is
called to be admissible ifgs are analytic matrices inD , Ds is non-
singular inD , andNsD

�1
s is a contractive matrix in theD . In

Krein spaces the third property is relaxed to the nonsingularity. It
is well-known thatgs converges to

�
G� O

��
in Hilbert spaces.

We are also able to prove similar convergence theorems [16] in the
Krein space.

In Kalman filter,H1-filter and control theory, a rational ma-
trix valued function��(z) called the Popov function associated
to� is defined as in (3) after settingW (z) = C�(zI � A)�1. In
these problems, it is important to obtain the spectral factorization
of the Popov function��. We note that the Popov function��

can be decomposed into the form of Caratheodory classes. HereQ
andR in � are positive-definite in the classical theory, but in the
Krein space it isn’t necessary.

Lemma 3.1. Define Popov function�� as in (3) and assume that
there is a solutionP of the Lyapunov equation of the form

P = APA� +Q (12)



whereA is asymptotical stable, i.e., all of the eigenvalues ofA
are in the unit disk, andQ is a symmetry matrix. Then�� can
be decomposed as in (8). Moreover, if we assume thatF (z) =�
Â; B̂; Ĉ; D̂

�
(z) is defined as the equation (1), then̂A; B̂; Ĉ; and

D̂ has the following forms:

Â = A; B̂ = C�PA+ L; Ĉ = C; D̂ =
R+ C�PC

2
: (13)

Proof. First, change the termP � APA� of (12) by adding the
termszI �A; z�1I �A� such that

P �APA� =(zI �A)P (z�1I �A�)

+AP (z�1I �A�) + (zI �A)PA�:
(14)

ReplaceQ of the right side of the equation (12) by the equation
(14) and reformulate�� such that

��(z) = R + C(zI �A)�1L+ L�(z�1I �A�)�1C� +

CPC� + C(zI �A)�1APC� + CPA�(z�1I �A�)�1C:

(15)

HenceF (z) satisfies the equation (13).

In result, we can transform a Popov function�� to a Caratheodory
form. Now we shall derive a state-space interpretation of the Schur
recursion. LetD̂ = MJM�. By multiplying M�1;M��1 on
both side ofF (z), we can normalizeF (z). Hence without loss
of generality, we can setF (z) =

�
A;B;C; J

�
(z), D1(z) =�

A;B;C; 2J
�
(z) andN1(z) =

�
A;B;C;O

�
(z) in (9). Let’s re-

view the basic operations of the state-space realization which are
needed in the recursive procedure. Assume that

�
A;B;C;D

�
(z)

is a state-space realization representation. Let’s defineFi(z) =�
Ai; Bi; Ci; Di

�
(z) for eachi = 1; 2. Then the following prop-

erties are satisfied:

1. F�11 (z) =
�
A1 �B1D

�1
1 C1; B1D

�1
1 ; D�11 C1; D

�1
1

�
(z),

2. if F (z) =
�
A;B;C;O

�
(z),

thenz�1F (z) =
�
A;BA;C;CB

�
(z).

See [13] for details. Using these operations it is possible to obtain
the following theorem.

Theorem 3.2. Assume that the initial graph functiong1 is de-
fined byg1 =

�
(J + ~F )� (�J + ~F )�

��
. Assume thatgk =�

D�k N�
k

��
derived by the Schur recursions can be expressed in

the form of state-space representation asDk(z) =
�
A;�k; Ck;
k

�
(z) andNk(z) =

�
A;�k; Ck; O

�
(z). LetH(ck) be defined as in

(4). Then�k;
k and�k satisfy :

gk+1 = H(ck)

�
J O
O z�1J

�
gk; (16)

�

k+1 �k+1

O �k+1

�
= H(ck)

�

k �k

�k �kA

�
: (17)

4. AN APPLICATION OF THE SCHUR ALGORITHM TO
THE H1-FILTERING PROBLEM

In previous sections, the generalized Schur recursion has been pro-
posed in indefinite metric spaces and we have shown that the Schur
algorithm is related to theJ-spectral factorization problem. It is

well-known thatJ-spectral factorization problems appear in the
H1 control theory, the game theory andH1 suboptimal filter-
ing problem [7, 8, 13]. We shall apply the results of the previous
sections to theH1 suboptimal filtering problem.

Let’s review the standard system model for the optimal filter-
ing problem.

1. Signal generation: consider a time invariant state space
model of the form

x(i+ 1) = Ax(i) +Bw(i) (18)

y(i) = Cx(i) +Dw(i) (19)

z(i) = Lx(i) (20)

for i = 1; 2; � � � wherex(t) 2 Rn is the state,w(i) 2 Rq

is the disturbance of noise,y(i) 2 Rp is the observation
signal andz(i) 2 Rm is the output of interest.

2. Filtering: The results of the optimal filtering is described
by:

x̂(i+ 1) = Ax̂(i) +Kf2(y(i)� Cx̂(i)) (21)

ẑ(i) = Lx̂(i) (22)

wherex̂(i) 2 Rn is the estimated state and̂z(i) 2 Rm is
the estimated output after filtering.

In theH1 suboptimal problem, our aim is to find an estimate of
z in the form ẑ = Fy such thatkRk1 <  for some given
whereR is a function of the form :R : w 7! z � ẑ. The state-
space based Riccati difference equation forH1 filtering problem
similar to that which occurs in Kalman filtering, is introduced in
[7, 8, 13]. The Riccati difference equation with stabilizing solution
Pk is defined as

Pk+1 = B̂JB̂� +APkA
� �Mk�

�1
k Mk (23)

for k = 1; 2; � � � , where�(k) andM(k) are defined as

�k = D̂JD̂� + ĈPkĈ
� (24)

Mk = B̂JD̂� +APkĈ
� (25)

with

�
A B̂

Ĉ D̂

�
=

2
4 A

�
B O

��
L
C

� �
O I
D O

�35 (26)

andJ = I��I. Now we shall define a Popov function related to
H1 filtering problems. As in the Kalman filtering problem where
a Popov function is given in the form of the power spectrum of
the stochastic processyk and is derived from the Riccati equation,
in H1 filtering problem a Popov function is given in the form of
the quasi power spectrum of

�
y(k)� z(k)�

��
. We will derive

the Popov function�� in theH1 filtering problem by using the
asymptotic solution of the Riccati difference equation.

Theorem 4.1. Assume thatMk;�k andPk converge toM;� and
P whenn ! 1. Let’s defineQ = BB�; R = BD� andR =
DD� and defineSf andRf such that

Sf =
�
O S

�
(27)

Rf =

�
�2I O
O R

�
: (28)



Define the transfer functionWc(z) and the gainKf such that
Wc(z) = Ĉ(z�1I � A)�1 andKf = M��1. Then the Popov
function satisfies that

� =WcQWc + SfW
�
c +WcSf +Rf

= (I +WcKf )�(I +K�
fW

�
c ):

(29)

Moreover, if we setY (z) = I +Wc(z)Kf , thenY �1 is analytic
in E.

Proof. Asn!1, the solution of the Riccati difference equation
satisfies:

P �APA� = Q�M��1M�: (30)

The left side of (30) can be replaced by (14), and then be pre-
and post- multiplied byWc(z) and ~Wc(z), respectively. From
ĈP Ĉ� = ��Rf andAPĈ� =M�Sf , and hence substituting,
we obtain (29). And it is easy to check that the right side of (29) is
analytic.

Finally, a Popov function forH1 suboptimal filtering is derived
of the form

�(z) =
�
Wc(z) I

� �Q Sf
S�f Rf

� �
~Wc(z)
I

�
: (31)

The middle term of the left side of (31) agrees with� of a Popov
function of (2). Note thatRf is an indefinite matrix. Hence by
using the generalized Schur algorithm forJ spectral factorization,
Y andKf can be derived. As Kalman filtering, we can formulate
a Chandrasekhar or a square-root forH1 filtering. LetPk be the
solution of the difference Riccati equation (23) withP1 = P Let
WkJW

�
k = fĈPkĈ

� + Rfg andLk = fAPkĈ
� + SgW�1

k .
Then fork = 1; 2; � � � ,Wk; Lk andPk satisfy the properties :

Wk+1JW
�
k+1 =WkJW

�
k + Ĉ(Pk+1 � Pk)Ĉ

� (32)

Lk+1JW
�
k+1 = LkJW

�
k +A(Pk+1 � Pk)Ĉ

� (33)

(Pk+2 � Pk+1) + Lk+1JL
�
k+1

= A(Pk+1 � Pk)A
� + LkJL

�
k

(34)

From (32,33,34), following theorem can be proved immediately.

Theorem 4.2. LetWk andLk be as given in (32,33,34). SetPk+1�
Pk = ��kJ�

�
k wherePk is the solution of the Riccati equation.

ThenWk; Lk and�k for k = 1; 2; � � � can be computed recur-
sively using the array

�
Wk+1 O
Lk+1 �k+1

�
=

�
Wk �k
Lk A�k

�
U (35)

whereU is J1-unitary.

5. CONCLUSION AND DISCUSSION

We propose a generalized Schur algorithm in the Krein space which
enables us to obtain fast algorithms toJ- spectral factorization
problems or suboptimalH1- filtering. Since the generalized Schur
algorithm in the Krein space has different structures from the clas-
sical Schur algorithm, we also explore some problems in the un-
derlying structure. Our new algorithm can be applied to theH1

filtering problems andJ-spectral factorization problems.
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