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ABSTRACT

This paper investigates a Bayesian approach to the enhance-
ment of speech signals corrupted by additive white Gaus-
sian noise. Parametric models for the speech and noise
processes are constructed, leading to a posterior distribu-
tion for the model parameters and uncorrupted speech sam-
ples given the observed noisy speech samples. Being ana-
lytically intractable, inferences concerning these variables
are performed using Markov chain Monte Carlo (MCMC)
methods. The efficiency of the sampling scheme within this
framework is further improved by employing state-space
techniques based on the Kalman filter.

1. SPEECH ENHANCEMENT

The model considered for the enhancement of speech cor-
rupted by additive white Gaussian noise is the well-known
AR process. It has been extensively used for this purpose
[8], and has some justification from a physical point of view
in that it is a simplification of the system resulting when the
vocal tract is modelled as a lossless acoustic tube [4]. Its
main utility, however, follows from the analytic results it fa-
cilitates. A p-th order AR process is described by the equa-
tion:

xt =

pX
i=1

 ixt�i + et; (1)

with  i, i = 1; : : : ; p the AR coefficients, and et �
N (0; �2e) an i.i.d. excitation sequence. This equation can
be written in matrix-vector form for a block of T samples
as: e = 	x = x(1) � G , where e = [ep+1; : : : ; eT ]

0,
x = [x1; : : : ; xT ]

0, x(1) is x with the first p elements re-
moved, = [ 1; : : : ;  p]

0, and	 andG are constructed so
as to make the expression hold. The observations are given
by:

zt = xt + vt; (2)

where fvtg is a white Gaussian noise process, i.e. vt �
N (0; �2v), with cov(vs; vt) = 0 for s 6= t.

The estimation of the uncorrupted speech samples fxtg
and the model parameters can be cast in a statistical frame-
work. Defining � = [ i, i = 1; : : : ; p; �2e; �

2
v]
0 and in-

terpreting this together with x as random vectors, Bayes’

rule leads to a joint posterior distributionfor the uncorrupted
samples and the model parameters (assumed stationary over
T samples) of the form:

p(x; �jz) =
p(zjx; �)p(xj�)p(�)

p(z)
; (3)

with z = [z1; : : : ; zT ]0 the vector of observations. In (3),
p(xj�) is the likelihood of the parametric model generating
the uncorrupted speech x, when the model parameters � are
known. For the AR(p) model the likelihood is Gaussian and
can be approximated as [2]:

p(xj�) = N (x;0; �2e(	
0	)�1): (4)

On the other hand, p(zjx; �) is the total likelihood of the ob-
served data zwhen both the model parameters � and the un-
corrupted speech sequence x are known. It, thus, depends
solely on the characteristics of the noise process, and for
white Gaussian noise is given by:

p(zjx; �) = N (z;x; �2vI): (5)

The distribution p(�) is the prior density expressing initial
beliefs about the unknown parameters � before the data is
seen. To facilitate analytic tractability and retain flexibility,
the following conjugate prior is employed:

p(�) = N ( ; �� ; �� )IG(�2e ;�e; �e)IG(�2v;�v; �v);

(6)

where IG(�) denotes the inverted-gamma distribution. Note
that the parameters are assumed to be a priori independent.
Finally, p(z) (sometimes called the evidence for the model)
is a constant normalising factor, independent of the uncor-
rupted speech sequence x and model parameters �, and can
usually be discarded in applications where issues other than
model comparison are at stake.

One commonly employed estimate for the uncorrupted
speech and model parameters is the minimum mean square
error (MMSE) estimate, which can be expressed as:

(x; �)MMSE =

Z
x

Z
�

x�p(x; �jz)dxd�: (7)

If samples (x; �)i, i = 1; : : : ; N can be drawn from the joint
posterior p(x; �jz), Monte Carlo integration can be used to



approximate this estimate as:

(x̂; �̂)MMSE =
1

N

NX
i=1

(x; �)i: (8)

In general, drawing samples from p(x; �jz) is not straight-
forward, due to the fact that it is usually high-dimensional
and non-standard. One way of doing this is by setting up
a Markov chain having p(x; �jz) as its stationary distribu-
tion. The combined method is then known as Markov chain
Monte Carlo (MCMC). A special case of these techniques,
the Gibbs sampler, will be considered next.

2. THE GIBBS SAMPLER

The Gibbs sampler [7, 6] sets up an irreducible aperiodic
Markov [10] chain that converges to the target distribution
p(x; �jz) from which samples are desired. These samples
are obtained by repeatedly replacing each component of the
random vectors x and �with a value drawn from its distribu-
tion conditionedon the current values of all the other compo-
nents. This procedure for generating (x; �)i+1 from (x; �)i
can be expressed more clearly as:

 (i+1) � p( j�2e(i);x(i); z)

�2e(i+1) � p(�2ej (i+1);x(i); z)

�2v(i+1) � p(�2vjx(i); z) (9)

x(i+1) � p(xj (i+1); �
2
e(i+1); �

2
v(i+1); z);

where the posterior conditionals are given by:

p( j�2e;x; z) = N ( ;� ;� )

p(�2e j ;x; z) = IG(�2e ;�e + (T � p)=2; �e + e
0e=2)

p(�2vjx; z) = IG(�2v;�v + T=2; �v + (z � x)0(z � x)=2)

p(xj ; �2e ; �
2
v;x; z) = N (x;�

x
;�x); (10)

with� = � (G
0x(1)=�2e+ ��

�1
 �� ),� = (G0G=�2e+

��
�1
 )�1, �

x
= �xz=�

2
v and �x = (	0

	=�2e + I=�2v)
�1.

All these conditionals are in known parametric forms and
can be sampled from using standard techniques. Note, how-
ever, that the sampling step for the reconstructed speech
samples requires the inversion of a T � T matrix, which is
of O(T 3) complexity. This is computationally very expen-
sive, and makes the direct sampling of these values infeasi-
ble for all but unrealistically small values of T . The subse-
quent section describes a state-space method to sample from
the full conditional distribution p(xj ; �2e; �

2
v; z), resulting

in a computational complexity that is linear in T .

3. STATE-SPACE METHODS

The speech enhancement model can be represented in state-
space form:

yt = Zt�t +Gtut

�t+1 = Tt�t +Htut (11)

by defining the state, observation and disturbance vectors re-
spectively as: �t = [xt; xt�1; : : : ; xt�p+1]0 2 Rp, yt =
[zt] 2 Rand ut = [et+1; vt]

0 2 R2, and the system matri-
ces as:

Zt = Z =
�
1 0 : : : 0

�
2 R1�p; (12)

Gt = G =
�
0 �v

�
2 R1�2; (13)

Tt = T =

2
666664

 1  2 : : :  p�1  p
1 0 : : : 0 0
0 1 : : : 0 0
...

...
. . .

...
...

0 0 : : : 1 0

3
777775 2 Rp�p (14)

and

Ht = H =

2
6664
�e 0
0 0
...

...
0 0

3
7775 2 Rp�2: (15)

State-based sampling techniques [3, 5, 9] sample directly
from the posterior conditional p(�jyT ; �), where � =
[�0

1; : : : ;�
0
T ]

0 is the stacked state vector and yt =
[y01; : : : ;y

0
t]
0. Using the first-order Markov nature of the

state process and the causality of the system, this conditional
can be decomposed according to the probability chain rule
as:

p(�jyT ; �) = p(�T jy
T ; �)

T�1Y
t=1

p(�tj�t+1;y
t; �) (16)

A draw from p(�jyT ; �) can thus be constructed by
recursing backwards in time for t = T; T � 1; : : : ; 1,
provided that sub-draws from the densities on
the RHS of (16) are practical. From Bayes’ rule
p(�tj�t+1;y

t; �) / p(�t+1j�t; �)p(�tjyt; �). Follow-
ing from the state transition equation and the Gaussian na-
ture of the disturbances p(�t+1j�t; �) = N (Tt�t;HtH

0
t).

Similarly, p(�tjyt; �) = N (at;Pt), with at and Pt

given by the Kalman filter equations [1]. Consequently,
p(�tj�t+1;y

t; �) = N (atjt+1;Ptjt+1) is Gaussian, with
mean vector and covariance matrix given by:

atjt+1 = At(at +Bt�t+1); Ptjt+1 = AtPt; (17)

where At = (I + BtTt)
�1 and Bt = PtT

0
t(HtH

0
t)
�1.

Thus, all the densities in (16) are Gaussian, and sampling for
� can proceed straightforwardly.



3.1. Degeneracies

Generally, the components of the stacked state vector �
are not independent, and many identities link the compris-
ing state variables �t, t = 1; : : : ; T . These identities are
problem dependent and a direct consequence of forcing the
model into state-space form. They lead to degeneracies, i.e.
situations where the effective number of degrees of freedom
are less than the dimensionality of the problem, and conse-
quently must be kept track of in the recursive construction
of the draw.

For the speech enhancement model the definition of the
state vector is such that the first p � 1 components of �t

overlap with the last p�1 components of�t+1. Thus, in the
recursive construction of the draw backwards in time, only
the distribution for the final state�T is not degenerate. For
all the other states �t, t = T � 1; : : : ; 1, the distributions
are degenerate, having only one degree of freedom, with the
first p � 1 components fixed by the draw from the distribu-
tion of the successive state�t+1. For these states, the draw
for the unknown component is made from the appropriate
conditional.

More precisely, if v(i) is the i-th component of a vector v,
and v(�i) is the vector v with the i-th component removed,
the state vector can be written as: �t = [(�(�p)

t )0; �(p)t ]0.
Because of the jointly Gaussian nature of the components
of the state vector �t, the univariate conditional for �(p)t is
also Gaussian. Writing the mean and covariance matrix of
p(�tj�t+1;y

t; �) as:

atjt+1 =

"
a
(�p)
tjt+1

a
(p)
tjt+1

#
; Ptjt+1 =

"
P
(�p;�p)
tjt+1 P

(�p;p)
tjt+1

P
(p;�p)
tjt+1 P

(p;p)
tjt+1

#
;

(18)

the univariate Gaussian distribution for the posterior condi-
tional can be obtained as:

p(�
(p)
t j�

(�p)
t ;�t+1;y

t; �) = N (�a
(p)
tjt+1;

�P
(p)
tjt+1); (19)

with

�a
(p)
tjt+1 = a

(p)
tjt+1 +P

(p;�p)
tjt+1 (P

(�p;�p)
tjt+1 )�1(�

(�p)
t � a

(�p)
tjt+1)

(20)

and

�P
(p)
tjt+1 = P

(p;p)
tjt+1 �P

(p;�p)
tjt+1 (P

(�p;�p)
tjt+1 )�1P

(�p;p)
tjt+1 : (21)

3.2. Sampling Strategy Summary

The process of sampling from p(xjz; �) using the state-
based algorithm can be summarised as follows:

(a) Cast the model into state-space form.

(b) Initialise the Kalman filter, and run it forwards in time
to obtain the means at and covariance matrices Pt

for the distributions p(�tjyt; �) = N (at;Pt), t =
1; : : : ; T .

(c) Sample the final state as: �T � p(�T jy
T ; �) =

N (aT ;PT ).

(d) Recurse backwards in time for t = T � 1; : : : ; 1 and
sample the unknown components of �t from the cor-
responding degenerate distributions, fixing the known
components according to the relations between the suc-
cessive state vectors. For the speech enhancement
model the steps involved can be summarised as fol-
lows:

(i) Let �
(�p)
t = [�(1)t ; : : : ; �

(p�1)
t ]0 =

[�
(2)
t+1; : : : ; �

(p)
t+1]

0.

(ii) Sample the p-th state component of�t as: �(p)t �

p(�
(p)
t j�

(�p)
t ;�t+1;y

t; �) = N (�a
(p)
tjt+1;

�P
(p)
tjt+1),

with �a
(p)
tjt+1 and �Ptjt+1 given by (20) and (21), re-

spectively.

(e) Extract the vector of reconstructed samples x from the
stacked state vector � by making use of the composi-
tion of the state vector. For the speech enhancement
model it amounts to setting x = [�(1)1 ; : : : ; �

(1)
T ]0.

Sampling from p(xjz; �) in this way reduces the computa-
tional complexity toO(p3T ), which is linear in T .

4. RESULTS AND CONCLUSIONS

The method was evaluated on the utterance: “She had your
dark suit in greasy wash water all year.” from the Resource
Management database, spoken by a white male speaker with
a New England American accent. The clean speech was cor-
rupted by an additive noise process, with variance changing
quadratically over the utterance. The resulting signal was
processed in blocks of 480 samples, corresponding to a time
window of 30 msec., within which the speech and noise pro-
cesses were assumed to be stationary. The blocks were over-
lapped by p samples, and a value of p = 10 was found to be
adequate.

Initial estimates for the AR coefficients and excitation
variance for all the blocks in the sequence were obtained by
maximum likelihoodestimation. Also, the parameters of the
priors were chosen so as to result in these densities being
non-informative. To increase the computational efficiency,
the number of sampling iterations per block were reduced
to a maximum of 30, with the first 20 taken as the burn-in
period for the Gibbs sampler.

The enhancement results are depicted in Figure 1,
whereas the ability of the algorithm to track the true noise



variance profile is clearly illustrated in Figure 2. An overall
SNR improvement of 4.68 dB was obtained. In general,

0 10 20 30 40 50 60 70 80
−50

−40

−30

−20

−10

0

10

20

S
N

R
 (

dB
)

Input (x) and output (o) SNR

0 10 20 30 40 50 60 70 80
3

3.5

4

4.5

5

5.5

6

6.5

Block

D
el

ta
 S

N
R

 (
dB

)

SNR improvement

Figure 1: Input and output SNR, and SNR improvement pro-
files.
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Figure 2: Estimated and true noise variance profiles.

the algorithm proved to yield satisfactory SNR improve-
ments, even in environments where the background noise
level was allowed to vary slowly over time. Furthermore,
the enhancement performance was found to be relatively
insensitive to the exact choices for the initial parameter
estimates, prior distribution parameters, and even the AR
modelling order. In most cases the Markov chain converged
rapidly to a solution, so that useful MMSE estimates could
be obtained after only a few iterations; a very important
utility in the processing of long sequences.
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