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ABSTRACT

A central problem in sensor array processing is the local-
ization of multiple sources and the reception of the signals
emitted by those sources. Many approaches have been stud-
ied for this problem when the additive noise in the sen-
sor array data is modeled with a Gaussian distribution.
However, the schemes designed for Gaussian noise typically
perform very poorly when the noise is non-Gaussian. An
algorithm is presented in this paper for array processing
in non-Gaussian noise. The algorithm is based on model-
ing the noise with a Gaussian mixture distribution. The
expectation-maximization (EM) algorithm is then used to
derive an iterative processing structure that estimates the
source locations, estimates the source waveforms, and adapts
the processing to match the characteristics of the noise.
Simulation examples are presented to illustrate the perfor-
mance of the algorithm.

1. INTRODUCTION

The general problem in array signal processing is to obtain
information about remote sources by processing the data
measured from an array of sensors. For example, when
applied in a multiple-user communication system, the ob-
jective is often to estimate the user locations and the indi-
vidual user signals. This problem has been studied exten-
sively when the additive noise that corrupts the measured
data is modeled with a Gaussian distribution [1]. Many
approaches have been considered for this case, including
linear beamforming, high-resolution methods based on sub-
space processing, and maximum likelihood (ML) solutions.
However, the techniques designed for Gaussian noise envi-
ronments typically perform very poorly when the noise is
non-Gaussian and \impulsive" in nature [2].

An approach to array processing in non-Gaussian noise
is presented in this paper that is based on modeling the
probability density function (pdf) of the additive noise with
a �nite mixture of Gaussian pdfs. An iterative algorithm for
estimating the signal and noise parameters is then derived
using the expectation-maximization (EM) algorithm.

We have recently applied a similar approach to develop
an adaptive spatial diversity receiver for communication
channels with fading and impulsive noise [3], [4]. Our expe-
rience with the spatial diversity application as well as the

array processing application considered in this paper indi-
cates some interesting features of the approach. First, the
complexity of each iteration of the EM algorithm is low, be-
ing comparable to the complexity of a processor designed
for Gaussian noise. Convergence is typically rapid (within 5
iterations), so the increase in computation is modest. Sec-
ond, the processing adapts to the noise characteristics, with
very good performance exhibited for a wide range of non-
Gaussian as well as Gaussian pdfs. Third, the method per-
forms well with small sample sizes.

Other approaches to array processing in non-Gaussian
noise include references [5]-[8]. Distinctive features of the
EM-based algorithm presented in this paper include the au-
tomatic adaptation of the processing to the observed noise
characteristics, and that the processing structure is simi-
lar to that used with Gaussian noise, with modi�cations to
mitigate the e�ects of impulsive noise.

The paper is organized as follows. Section 2 presents
the model for the sensor array data. Section 3 presents
the EM algorithm for estimating the source locations, the
source waveforms, and the noise characteristics. Simulation
examples are presented in Section 4, and Section 5 contains
concluding remarks.

2. DATA MODEL

Let us model the complex envelope of narrowband, discrete-
time observations at a sensor array with N elements as

x(t) =

KX
k=1

a(�k)sk(t) +w(t)

= As(t) +w(t); t = 1; : : : ; T; (1)

where x(t) = [x1(t); : : : ; xN(t)]
T , a(�) = [a1(�); : : : ; aN (�)]

T

is the array response to a unit-amplitude source in direc-
tion �, K is the number of sources, � = [�1; : : : ; �K] are the
source directions, A(�) = [a(�1); : : : ;a(�K)] is an N � K

matrix, s(t) = [s1(t); : : : ; sK(t)]T is the vector of source
complex amplitudes at time t, and w(t) is the additive noise
vector. (The superscripts T; �, and H denote the transpose,
complex conjugate, and conjugate-transpose operations, re-
spectively.) We shall model the noise w(t) as independent
and identically distributed (iid) in space and time, with



marginal pdf given by the L-term Gaussian mixture

fW (w) =

LX
l=1
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2�2
l

�
: (2)

The objective is to estimate the source directions �1; : : : ; �K
and the deterministic source waveforms s(1); : : : ; s(T ). The
number of sources K is assumed to be known.

In the pdf (2), �l represents the probability that W is

chosen from the lth term in the mixture pdf, with
PL

l=1 �l =
1. For the case of L = 2 terms, a typical model for impul-
sive noise has �22 � �21 with �2 < �1, so that large noise
samples with variance �22 occur with frequency �2 in a back-
ground of Gaussian noise with variance �21. Three justi�-
cations for this noise model are (1) the set of Gaussian
mixture distributions includes an approximation to Mid-
dleton's canonical class A model [9], (2) Fan's theorem [10]
indicates that Gaussian mixture distributions can approx-
imate a large class of pdfs, and (3) the Gaussian mixture
distribution naturally includes the Gaussian thermal noise
that is present in essentially all electronic systems. We will
assume that the number of terms L in the mixture pdf (2)
has been determined prior to applying the methods devel-
oped in this paper. Our experience indicates that choosing
L � 4 provides an accurate model in a variety of noise en-
vironments.

3. EM ALGORITHM

This section begins with a brief summary of the EM al-
gorithm. General references for the EM algorithm include
[11]-[15]. Then the EM algorithm for array processing in
non-Gaussian noise is presented in Section 3.2.

3.1. General EM algorithm

The �rst step in applying the EM algorithm is the speci�ca-
tion of a set of \complete data" Xc and \incomplete data"
X for the problem. The pdfs for Xc and X are character-
ized by a common set of parameters �. The complete data
Xc is not available, but it is chosen in such a way so that
if it were available, then the maximum-likelihood (ML) es-
timate of � would be easy to �nd. That is, if hc (Xcj�) is
the pdf of the complete data, then it is straightforward to
�nd � that maximizes the likelihood hc(xcj�) for a given
set of complete data Xc = xc. Conversely, the incomplete
data X is available, but the ML estimate of � based on
X is di�cult to �nd directly. The EM algorithm addresses
this situation and provides an iterative procedure for ML
estimation of � based on the incomplete data X.

For the application of array processing based on the
model (1), the set of parameters is � = f�; s(1); : : : ; s(T );
�1; : : : ; �L; �

2
1; : : : ; �

2
Lg. The complete data Xc is de�ned to

include a \label" for each observation that identi�es which
term f1; : : : ; Lg in the mixture pdf (2) produced the addi-
tive noise sample in the observation. Thus the complete
data Xc is corrupted by additive Gaussian noise with vari-
ance that changes from sample to sample. Of course, the
noise samples are not labeled in the incomplete data X that
is available, hence the role of the EM algorithm.

In addition, the complete data Xc is also de�ned to facil-
itate the estimation of parameters due to multiple sources.
The approach is similar to that used in [16] and [17] in
the derivation of EM algorithms based on a Gaussian noise
model. The complete data Xc is de�ned as observations
of the K individual source waves in noise, i.e., x(k)(t) =

a(�k)sk(t) + w(k)(t); k = 1; : : : ; K. The incomplete data
X are the observations in (1), which are related to Xc by

x(t) =
PK

k=1
x(k)(t). This formulation of complete data Xc

is motivated by the fact that the ML estimates of source lo-
cation �k and waveform sk(t) are well-known for a single

source.
The EM algorithm is an iterative procedure that is de-

�ned as follows. The EM algorithm computes an updated
estimate for � based on a previous estimate �0 and the
incomplete data X by iterating the following two steps:

E-step: Q (�j�0) = E flog hc(Xcj�) j X; � = �0g
M-step: � = argmax Q (�j�0)

The E-step averages over the unavailable parts of the com-
plete data Xc, given the available data X and the previous
parameter estimates �0. The sequence of estimates pro-
duced by iterating the EM algorithm have increasing like-
lihood [11], so they converge to a (local) maximum of the
incomplete data likelihood function.

We have omitted derivations of the EM algorithms pre-
sented in this paper. The derivations involve performing
the E- and M-steps listed above, with modi�cations similar
to the SAGE algorithm [15] for simpli�ed processing and
improved convergence.

3.2. EM algorithm for array processing

The EM algorithm to update from previous estimates �0 to
new estimates � based on x(1); : : : ;x(T ) begins with the
de�nitions

pl
0(n; t) =

�l
0

�l0
2 exp
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��xn(t)�PK
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gl
0(n; t) =

pl
0(n; t)PL

q=1 pq
0(n; t)

;

l = 1; : : : ; L
n = 1; : : : ; N
t = 1; : : : ; T:

(3)

Diagonal matrices are de�ned as

G
0

l(x(t)) = diagfgl
0(1; t); : : : ; gl

0(N; t)g (4)

G
0(x(t)) =

LX
l=1

1

�l0
2
G

0

l(x(t)): (5)

Source location estimates �1; : : : ; �K are updated as

dx(k)(t)0 = a(�k
0)sk(t)

0 +
1

K

�
x(t)�A(�0)s(t)0

�
(6)

�k = argmax
�

TX
t=1

���a(�)HG0(x(t))dx(k)(t)0���2
a(�)HG0(x(t))a(�)

: (7)

The remaining parameter estimates are updated as



s(t) =
�
A(�)HG0(x(t))A(�)

�
�1

�
�
A(�)HG0(x(t))

�
x(t) (8)

�l =
1

NT

NX
n=1

TX
t=1

gl
0(n; t) (9)

ŵ(t) = x(t)�A(�)s(t) (10)

�
2
l =

PT

t=1 ŵ(t)HG0

l(x(t))ŵ(t)

2NT�l
: (11)

The EM algorithm (3)-(11) is valid for K � 1 sources.
Interpretations and simulation examples are provided for
the case of a single source in the following section.

4. DISCUSSION AND SIMULATION

Let us consider the case of a single source K = 1 and
compare with the ML processor for Gaussian noise. With

K = 1, step (6) is trivial with dx(k)(t)0 = x(t). The ML so-
lution for Gaussian noise chooses �1 to maximize the spatial
power spectrum

PGaussian(�) =
a(�)HR̂xxa(�)

ka(�)k2
(12)

where R̂xx =
PT

t=1
x(t)x(t)H is the estimated array cor-

relation matrix. The signal waveform is then estimated by
the linear beamformer

s1(t) =
a(�1)

Hx(t)

ka(�1)k
2
2

; t = 1; : : : ; T: (13)

Comparing (12) and (13) for Gaussian noise processing with
(7) and (8) in the EM algorithm, we can identify the EM
estimate of the \spatial spectrum" in (7) as

PEM(�) = a(�)H

"
TX
t=1

y(t)y(t)H

a(�)HG0 (x(t))a(�)

#
a(�) (14)

where y(t) = G0 (x(t))x(t). Similarly, the EM signal esti-
mate (8) is a \nonlinear beamformer"

s1(t) =
a(�1)

Hy(t)

a(�)HG0 (x(t))a(�)
; t = 1; : : : ; T (15)

that suppresses the e�ects of impulsive noise.
Let us consider a numerical example of a uniform line

array with N = 10 elements and half-wavelength spacing.
Additive noise is generated with the Gaussian mixture pdf
(2) with L = 2 terms and parameters �1 = 0:95; �2 =
0:05; �21 = 1, and �22 = 1000. The EM algorithm (3)-(11) is
used with L = 2 terms in the noise model, thus allowing an
exact match between the noise model and the actual noise
pdf. The signal variance is 10, and one source (K = 1) is
located at angle �1 = 10o or u1 = sin �1 = 0:1736. The EM
algorithm is iterated 5 times. Figure 1a contains plots of
the spatial power spectra with Gaussian processing (12) and
EM processing (14) for a typical run using T = 100 time

samples. Note that the impulsive noise distorts the Gaus-
sian power spectrum and yields an inaccurate estimate of
the source direction û1 = 0:153. In contrast, the EM power
spectrum provides an accurate estimate of the source direc-
tion û1 = 0:173. Figure 1b shows the amplitude of the esti-
mated signal waveform for the �rst 35 time samples based
on (13) for Gaussian processing and (8) for EM processing.
The e�ects of impulsive noise on the Gaussian estimate are
evident, while the EM estimate follows the actual signal
amplitude closely.

In order to test the algorithm with additive noise that is
not exactly modeled by a Gaussian mixture pdf of the form
(2), the simulation was repeated with complex-valued noise
samples whose real and imaginary parts are described by a
Cauchy pdf with scale parameter 1. The results were very
similar to those presented above for Gaussian mixture noise.
However, L = 4 terms were needed in the noise model (2)
for good performance.

5. CONCLUDING REMARKS

An approach to array signal processing in non-Gaussian
noise has been presented based on modeling the additive
noise with a Gaussian mixture pdf and using the EM al-
gorithm to estimate the signal and noise parameters. The
approach is general and can be applied to other signal pro-
cessing applications, such as digital communication over
channels with intersymbol interference and non-Gaussian
noise [18].
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