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ABSTRACT

This paper discusses a method to search quickly through
broadcast audio data to detect and locate known sounds
using reference templates, based on the active search
algorithm and histogram modeling of zero-crossing fea-
tures. Active search reduces the number of candidate
matches between reference and test template by up
to 36 times compared to exhaustive search, while still
remaining optimal. Computation is further reduced
by using computationally inexpensive zero-crossing fea-
tures. The method is robust against white noise addi-
tion down to 20dB signal-to-noise ratios and digitiza-
tion noise.

1. INTRODUCTION

This paper addresses the problem of detecting and lo-
cating sound objects from a stream of broadcast audio
data quickly, while using computationally inexpensive
processing. This has wide applications. One applica-
tion is monitoring television audio data for the occur-
rence of a commercial. Another is the activation of a
video cassette recorder (VCR) based on a programme's
familiar theme tune alone, requiring no knowledge of
the television timing schedule.

The emphasis of this paper is on increasing the
speed of accurate audio retrieval using the active search
algorithm, histogram modeling and computationally sim-
ple zero-crossing features. The active search algorithm
has been applied to vision by Vinod and Murase [7]. In
this paper we apply analogous methods to audio.

The paper is organized as follows. Section 2 presents
the background theory. Section 3 explains the data
used, experiments conducted and results. Section 4
is the discussion. Finally conclusions are presented in
section 5.
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Figure 1: Schematic diagram of the active search algo-
rithm



2. THEORY

The general problem is that of searching for a reference
template in a test audio stream. However the reference
template will generally never be an exact match of any
section of the test audio stream, because of noise. Noise
may be due to di�erent methods of digitization, ther-
mal noise etc.

The method of search discussed in this paper is that
of sliding the reference template across the test audio
stream and evaluating the similarity between the ref-
erence template and the test audio stream at selected
locations. Whenever the similarity rises above a thresh-
old value, then the reference sound is detected and lo-
cated. This requires a template model and a search
algorithm. Both are investigated here. Figure 1 out-
lines the methods used.

2.1. Template modeling using histograms

The reference template is obtained by dividing the ref-
erence sound window into a number of �xed length
frames, extracting a feature vector from each frame,
and then �nding the probability distribution of feature
vectors in feature space over this window. A histogram
is used as the non-parametric model for this distribu-
tion. The same process is applied to a window of test
data to obtain a test template. Similarity between the
test and reference templates hR and hT respectively, is
achieved using histogram intersection, where B is the
number of histogram bins:

S(hR; hT ) =

BX
i=1

min(hiR; h
i

M ) (1)

Swain and Ballard [6] have shown that the histogram
space provides su�cient inter-object discrimination in
vision. This technique has been applied successfully to
image object detection by Vinod and Murase [7]. We
now apply these methods to the audio domain.

The choice of features is important. Cepstral co-
e�cients have been used to distinguish speech from
non-vocal sounds by Foote [1], and Hoyt and Wechsler
[2]. However the cepstrum is computationally expen-
sive and not suitable for quick searching.

Kedem shows that the zero-crossing rate (ZCR) and
higher-order crossings of the time waveform discrimi-
nate sounds [4]. This is applied to real-time discrimina-
tion of speech from music by Saunders [5]. Further uses
of the zero-crossing in speech are discussed by Juang
and Rabiner [3]. The i th order zero-crossing Zi over a
sample N is de�ned as:

Zi =
NX
n=1
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where si is the i th order di�erence signal:

si(n) = si�1(n)� si�1(n� 1) (3)

These features are used because of their computational
simplicity and proven discrimination properties.

2.2. The active search algorithm

The simplest method of search is that of sliding the ref-
erence template across the test audio stream one time
step at a time and evaluating the similarity between the
reference template and test audio stream at each time
step. Whenever the similarity rises above a threshold
value, then the reference sound is detected and located.
This is termed exhaustive search and requires consid-
erable computation at every time step.

However, similarity between the test and reference
template shows considerable correlation from one time
step to the next. The active search algorithm takes
advantage of this by computing an upper bound on
the similarity measure as a function of the time step,
and skipping all intermediate time step similarity eval-
uations until this upper bound exceeds the detection
threshold. Only then is the similarity measure eval-
uated, ignoring all intermediate evaluations, and thus
reducing computation. The proof for the upper bound
for the histogram model is given below, where frames
are the time step units used.

Upper bound proof

hR, hT (n1) and hT (n2) are the histograms for the
reference template R and the test template T for frame
numbers n1 and n2 respectively, normalized over the
number of frames in each histogram, N . The histogram
intersections at frames n1 and n2 are S(hR; hT (n1))
and S(hR; hT (n2)) respectively. Given the histogram
intersection at frame n1, the upper bound on the his-
togram intersection at frame n2 can be calculated.

As the sliding test window moves forward in time
from frame n1 to n2 one frame at a time, suppose every
poorly matched frame between hR and hT leaves the
window, and every new frame entering the window is a
good match. This represents the maximum rate of in-
crease of the histogram intersection. The upper bound
on S(hR; hT (n2)) is:
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If a correct match between reference and test tem-
plate is de�ned when the histogram intersection ex-
ceeds some threshold Sthresh , then we need only evalu-
ate the histogram intersection at time ncrit, and neglect
all intermediate histogram intersections.

ncrit = N

�
Sthresh � S

�
hR; hT (n1)

��
+ n1 (6)

This means that far fewer histogram intersections are
evaluated compared to exhaustive search, where inter-
sections are evaluated every time step. However the
search algorithm still remains optimal insofar as de-
tecting matches above a given threshold.

2.3. The audio retrieval algorithm

The audio retrieval algorithm is as follows:

1. Take the reference template histogram ofN frames.

2. Obtain a test template histogram of the �rst N
frames of the test audio stream, starting at frame
1. This is the seed model. Set n = 1.

3. Calculate the histogram intersection between the
reference and test template S(hR; hT (n)) at frame
number n. If this exceeds a threshold then the
sound is detected.

4. Using equation 6 calculate the future frame num-
ber ncrit where the histogram intersection upper
bound �rst exceeds the threshold.

5. Determine the test template shifted one frame
along in time. This is achieved by subtracting
the frame n feature vector from the histogram,
and adding the frame (N + n) feature vector to
the histogram.

6. Set n = n+1.

7. If n == ncrit, then return to number 3. Other-
wise return to number 5, until all the test data
has been considered.

The test template is shifted one frame at a time
in the direction of positive time. Each shift requires
the evaluation of only two feature vectors. The his-
togram intersection between test template and refer-
ence template is only evaluated when the intersection
upper bound exceeds the detection threshold. Multiple
detections within one time window of the maximum in-
tersection value are considered as a single sound object.

3. PROCEDURE AND RESULTS

Reference templates were selected uniformly from 121
seconds of 16 bit 44.1 kHz audio data, consisting of
10 commercials recorded from the television. Three
di�erent test audio data were considered.

1. Test data 1 An exact copy of the reference au-
dio data.

2. Test data 2 The reference data was re-sampled
using a di�erent analogue to digital converter.
This gave a 22dB SNR error of the reference rela-
tive to the test data, once both �les were aligned
and normalized to the same power. This mod-
els digitization noise, which is mainly a low fre-
quency error.

3. Test data 3 White noise was added to test
data 2 at SNRs of 15dB, 20dB and 30dB relative
to test data 2. This models digitization noise
combined with transmission noise etc.

Both test and reference data were split into non-
overlapping, non-windowed frames of 512 samples (11.6
ms). DC normalization was applied to each frame to
reduce the e�ects of analogue-to-digital conversion DC
o�sets. In all experiments, both reference and test tem-
plates were pre-�ltered with a 25-tap standard devia-
tion 2 Gaussian-impulse response �lter to reduce the
e�ects of high frequency noise.

The histogram model was optimized with respect to
the choice and size of feature vector, and the number,
size and range of bins. Optimization involved a trade-
o� between performance and computational cost. The
features used are the number of zero-crossings of the
signal, �rst order and second order di�erence signal (
Z0, Z1 and Z2 respectively). Each dimension is divided
into 8 equidistant bins ranging from 0 to 32, 0 to 48
and 0 to 88 for Z0, Z1 and Z2 respectively.

Two sets of experiments were conducted. During
each experiment, 120 reference templates were selected
uniformly from the reference audio data. The results
from the �rst 109 templates only were analyzed, be-
cause the remaining 11 templates sometimes occurred
too close to the end of the test audio data for one entire
window to be evaluated.

3.1. Testing model robustness and accuracy

The accuracy and robustness of the histogram model
against noise for di�erent window sizes was investigated
using the exhaustive search algorithm. Experiments
were conducted on test data 1,2 and 3. Table 1 shows
the precision-recall results at the optimum threshold.
The optimum threshold is de�ned when the sum of pre-
cision and recall is maximized.

3.2. Implementing the active search algorithm

The active search algorithm discussed in section 2.3
was tested. The optimum thresholds as determined in
section 3.1 were used as the thresholds in the active



test window white noise recall precision
data size SNR

1 11.89s 1.00 1.00
2 2.97s 0.94 0.96

5.94s 0.99 0.97
11.89s 1.00 1.00

3 2.97s 20dB 0.60 0.88
30dB 0.90 0.91

5.94s 20dB 0.78 0.87
30dB 0.97 0.94

11.89s 15dB 0.57 0.95
20dB 0.87 0.99
30dB 1.00 1.00

Table 1: Recall and precision ratios at the optimum
thresholds

search algorithm (see equation 6). The experiments in
section 3.1 were repeated. Table 2 shows the ratio of
the number of histogram intersection evaluations dur-
ing exhaustive search relative to active search based on
mean values.

4. DISCUSSION

Table 1 shows that the precision and recall ratios at
the optimum threshold increases with increasing win-
dow length. This is because a larger window models
a larger number of frames giving a histogram with a
greater resolution. Hence di�erent test templates can
be well-discriminated. Moreover, the decision is be-
ing made using a greater amount of information. The
11.89s window shows the best precision-recall trade-
o�. The tables show that the algorithm maintains use-
ful recall-precision ratios down to 20dB SNR. The his-
togram model with zero-crossing features has accept-
able robustness and accuracy for the applications in
mind. The simple computation compared to cepstrum
techniques increases search speed.

The use of the active search algorithm reduces the
number of evaluations of the similarity measure be-
tween the test and reference templates relative to ex-
haustive search. Table 2 shows that the ratio can be as
large as 36. Active search thus increases search speed.

5. CONCLUSIONS

The active search algorithm speeds up the search pro-
cess, reducing the number of evaluations of the simi-
larity measure between test and reference template up
to a factor of 36 times, with no loss in optimality. A

test window white noise ratio
data size SNR

2 2.97s 33.4
5.94s 22.8
11.89s 19.1

3 2.97s 20dB 35.8
30dB 29.9

5.94s 20dB 23.0
30dB 20.1

11.89s 15dB 20.5
20dB 15.9
30dB 13.0

Table 2: Ratio of the number of histogram intersec-
tion evaluations of exhaustive search relative to active
search

histogram model based on the zero-crossings discrim-
inates su�ciently to be used as template models. Its
simple computation also increases search speed. The
template matching methods show robustness against
white noise down to 20dB SNR and digitization noise.
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