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ABSTRACT

In this paper we present a new speech rate classifier (SRC)
which is directly based on the dynamic coefficients of the
feature vectors and it is suitable to be used in real time. We
also report the study that has been carried out to determine
what parameters of speech are the best regarding the speech
rate classification problem. In this study we analyse the
correlation between several speech parameters and the average
speech rate of the utterance. Finally, we report a compensation
technique, which is used together with  the SRC. This
technique provides with a word error rate (WER) reduction of
a 64.1% for slow speech rate and a 32% reduction of the
average WER.

1. INTRODUCTION

It is well known that the performance of LVCSR systems
dramatically degrades when the speech rate is different than
normal. We have checked out that the WER for slow and fast
speech increases up to 2.8 times on average with respect to the
WER at average speech rate. This is due not only to the
mismatch between the training and the testing conditions but
also to other factors (studied in our previous work [1]) like
phone elision or weakening, phone duration reduction,
aspiration, transient nature of the fast speech spectra, etc. The
phenomenon of speech rate variation is very common: we have
checked out that the rate of speech can significantly change
along a spontaneous speech utterance or even in a read
sentence. Furthermore, we have found out that in real
applications, when the sentence is misrecognised, users are
used to repeat the sentence very slowly to make it more
understandable. Besides, there are significant speech rate
differences among some of the different dialects of Spanish.
Finally, there is also inter/intra-speaker speech rate variability.
It is, therefore, necessary to introduce compensation techniques
as well as unsupervised speech rate classification methods
suitable to be used in real time to overcome this problem.

Several unsupervised speech rate measurements and
classification methods have been proposed recently [3][4][5].
The first one is based on estimating phone boundaries by
means of a multi-layer perceptron. The second relies on the
speech recogniser output and the third directly processes the
speech signal by measuring the variation of the energy
envelope of speech. All of them provide with promising results
on databases like WSJ, TIMIT, OGI and Switchboard.
However, these databases were not designed to study the
speech rate phenomenon so that they may have few examples

of both slow and fast speech (especially at extreme speech
rates) and, consequently, typical characteristics of high or low
ROS might be poorly represented. Therefore, we strongly
believe that it is necessary to have a specific database to study
the speech rate phenomenon and get reliable evaluation of both
speech rate classifiers and compensation techniques. For this
reason, all the experiments and conclusions we report have
been carried out using the TRESVEL database [1].

The goal of this research work was to develop a real time
speech rate classifier and compensation technique. This goal
was reached by first looking for correlations between different
speech related parameters and the average speech rate since we
also believe [5] the measure of speaking rate should be based
on the speech signal rather than on the speech recogniser
output or on phone boundaries. Therefore, in Section 2 we
show the results we have obtained in this study, which is
divided into three parts: (a) analysis of the evolution of the
ROS within the utterances, (b) study of the relation of  both the
average pitch and the pitch discontinuities rate (PDR) with the
average speech rate and, (c) analysis of the feature vector
dependency on the speaking rate. Section 3 describes the new
unsupervised speech rate classification method and its
experimental results. Section 4 describes the proposed
compensation technique and compares the experimental results
with the baseline and the compensation techniques tested in
our previous work [1]. Finally, in section 5 we present our
conclusions and future work in this area.

2. SPEECH PARAMETERS VERSUS
SPEAKING RATE

In our previous work, we presented a new supervised measure
for the speech rate and reported the characteristics of slow,
average and fast speech as far as phone duration, spectra and
phonetic changes is concerned, since our goal was to gather
information about the speech rate phenomenon. Our current
goal is to obtain a reliable ROS classification method based on
the speech signal and suitable to be used in real time. Hence, it
will be possible for us to use in real applications either the
speech rate compensation techniques reported in [1] or the one
reported in this paper. In this section we report the last results
of the study that has been done to look for a reliable ROS
classification method. The section is divided into three parts:
local speech rate analysis, pitch versus speaking rate, and
feature vector dependency on the speaking rate.

The experiments were done using the TRESVEL database,
which was designed to study, evaluate and compensate the



effect of speech rate on LVCSR systems. It is composed of
9600 utterances (3200 utterances for each speech rate), which
were pronounced by 40 speakers (20 female and 20 male). It
allows to compare every sentence at the three ROS since each
speaker uttered 80 sentences at slow, average and fast speech
rate.

2.1.- LOCAL SPEECH RATE ANALYSIS

This analysis was carried out in order to determine the speech
rate range of variation within an utterance and its trend, and try
to find out whether there is a correlation between these factors
and the average ROS.

To compute the local speech rate, we first used forced
alignment to determine the phone segmentation and then we
measured the local speech rate by using windows of a variable
number of frames (five phone windows) in order to make sure
that all the windows contained enough phones to compute
accurate average ROS values.  This measure was repeated
every two phones by using the formula reported in [1]. The
automatic phone segmentation was obtained using the correct
transcriptions in order to get reliable measures of the phone
rate. Figure 1 shows an example of the speech rate variation
within the utterance together with its linear regression.
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Figure 1: Example of  the ROS variation within the utterance
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Figure 2: Slope of the ROS variation linear regression
 versus the speech rate.

The local speech rate analysis shows that the standard deviation
of the ROS increases almost linearly with the average speech
rate. The analysis also suggests that the range of variation of
the ROS is not only related with the average ROS but also with
other variables such as the state of mind of the speaker, the
intonation and the part of the sentence the speaker wants to
emphasize. Nevertheless, we found a correlation between the

trend of the speech rate and the average ROS: We computed the
linear regression for the local speech rate variation curve of
each utterance and then obtained the slope of each line. From
this study it turned out that slow speech rates usually have
positive slopes, so that the ROS has the tendency to increase
along the utterance, while fast speech rates usually have
negative slopes and then the ROS tends to decrease along the
utterance.

Table 1

% positive slope slow average fast

female 79 43 34

male 64 61 32

Figure 2 represents the slopes of the linear regressions of the
ROS evolution within the utterance versus the average speech
rate. It also shows its linear regression that takes positive
values for slow speech and negative for fast speech. This fact is
clearly shown in table 1, which represents the percentage of
positive slope occurrence for both female and male speakers at
three speaking rates. The correlation between the slope and the
average ROS in TRESVEL suggest that it could be used as a
confidence measure for the first search pass in order to validate
both the hypothesised sentences and the speech rate
compensation technique applied in the recognition process.

2.2.- PITCH VERSUS THE SPEAKING RATE

The first experiments tried to find out whether there is a
relation between the average ROS and the average pitch in the
TRESVEL database. We did it by comparing the average pitch
for the same sentences uttered at the three speech rates. The
speaker dependent and independent experimental results
showed that apparently there is no relation between both
parameters.

 1                        3                        5

pdf

0.0

0.4

PD/s

Figure 3:Probability density function of the pitch
discontinuities (PD) rate.
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We later studied the correlation between the pitch
discontinuities rate (PDR) and the average speech rate. The
PDR was defined as the number of voiced-unvoiced transitions
per unit of time. Figure 3 shows the probability density
function of the PDR for each speech rate. The correlation
between average ROS and PDR is very low, just 0.16.
However, there are just some values of the PDR which are only



reached by slow or fast speech and some ranges of variation
that are reached by average and fast speech or by slow and
average speech. Consequently, a ROS classifier could not be
based on just PDR measures though for some speech rate
values it could certainly help to get a reliable confidence
measure for the classifier output.

2.3.- FEATURE VECTOR DEPENDENCY ON
THE SPEAKING RATE

The goal in this section was to determine the stream of the
feature vector which is most affected by the speaking rate since
it will be the best parameter set to be used by the speech rate
classifier. The feature vector of the speech recogniser is
composed of 51 MFCCs which are divided into four streams.
Each stream is modeled separately by means of 256
multivariate gaussians and then each SCHMM has four sets of
256 weights.

The study was done by adapting the SCHMMs for slow and fast
speech and then evaluating the entire adapted models and each
part of them separately. The adaptation of the models was
carried out by using a subset of 1000 utterances for each speech
rate and applying the Baum-Welch algorithm. The models were
later smoothed using deleted interpolation to increase the
robustness of the models since they may suffer from sparse
data problems. The testing set, of approximately 1300
utterances per speech rate, was randomly chosen from the
TRESVEL database and does not contain any utterance of the
training set.

Figure 4 shows the experimental results for slow speech: Full
adaptation (FA) of all the parameters of the models provides
with the largest WER reduction. Cepstral stream adaptation
(CA) as well as transition probabilities adaptation (TPA) are
the ones which provide with the smallest WER reduction. Just
as expected, the adaptation of the dynamic coefficients
provides with better results than CA and TPA. In particular, the
delta stream adaptation (DA) reduces the WER a 42.5% and the
delta-delta stream adaptation (DDA) a 41%. The adaptation of
both streams (D&DDA) provides with a 65.4% reduction of the
WER. This fact clearly indicates that both streams are the most
affected by the speech rate and therefore the most useful to
perform the ROS classification.

The experimental results for fast speech show an improvement
of the speech recogniser performance especially with the delta
and delta-delta streams adaptation method. However, the WER
reduction is smaller than for slow speech, mostly at very high
speech rates (more than 15 phones/s). There are three reasons
for this: (1) some triphone models cannot be properly time-
aligned with the speech signal because the duration of some
phones is lower than the minimum one allowed by the current
HMM topology, (2) the difficulty to accurately predict phonetic
phenomena like phone elision, (3) the inappropriate phonetic
transcriptions of the dictionary which, in some cases, do not
take into account fast speech phonetic phenomena.

The rationale for DA and DDA to behave better than CA and
TPA for slow and fast speech is that they capture the dynamic
characteristics of the speech spectra. Given that the duration of
spectral stable regions decrease with the speech rate [1] (at fast

speech rates almost there are no stable regions), the dynamic
coefficients will be different for slow, average and fast speech
rates. Therefore the adaptation process will correct the
mismatch between the average speech rate trained models and
the characteristics of slow and fast speech of the testing set.
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Figure 4: Percentage of WER reduction for slow speech rate

3. SPEECH RATE CLASSIFIER

In the previous section we have shown that the pitch
discontinuities per second as well as the slope of the linear
regression of the within utterance ROS are slightly related to
the average ROS. Hence, they cannot be used to classify the
speech rate of the incoming utterance, though they could
certainly help to compute confidence measures of the classifier
output. The classification procedure we propose in this paper is
based on the dynamic coefficients of the feature vector, since
we have shown that both delta and delta-delta coefficients are
the most affected by speech rate changes and therefore, are the
most appropriate to perform the classification. The
classification method is based on a gaussian classifier which
just need some frames of speech to determine whether the
utterance is slow, normal or fast.

The classifier was trained with a subset of the TRESVEL
database composed of 3100 utterances approximately. The
testing set was randomly chosen from the same database and it
is composed of 3800 utterances which do not belong to the
training set.

Experimental results show that the delta and delta-delta cepstra
based classifiers are able to distinguish fast, slow and average
speech from each other with an utterance classification
accuracy  of 80% for slow speech and 70% for fast speech,
what is a good and promising result if we take into account the
complexity of the testing set.

4. SPEECH RATE COMPENSATION

A compensation technique has been tested, which is based on
the use of speech rate dependent models (SRDM) together with
the speech rate classifier (SRC). The experiments have been
carried out using the speech recogniser of the ATOS
conversational system [2], which vocabulary size is about 4700
words.



Two different scenarios were tested: (1) ideal SRC and SRDM
and, (2) our proposed SRC and SRDM. Figure 5 presents the
results obtained with scenario (1) and compare them with both
the best compensation technique presented in [1],
LMPW&TPA, and the baseline system, which was trained for
average speech rate. In particular, figure 5.a shows the results
for slow speech and figure 5.b the results for fast speech.

We have checked out that the WER of the baseline system for
slow and fast speech increases up to 2.8 and 2.5 times
respectively with respect to the WER for average speech rate.
The baseline as well as both scenarios were evaluated with the
same testing sets described in section 3.
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Figure 5: Word error rates for (a) slow speech rate,
  and (b) fast speech rate.
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The results obtained with scenario (2) are a slightly worse than
those of scenario (1) for slow and average speech rate: 2.2%
reduction of the word accuracy for slow speech and 4.3% for
normal speech. Nevertheless, scenario (2) provided with a 8.3%
word accuracy improvement for fast speech. The reason for this
improvement is that some of the problematic utterances were
classified in the normal speech group and then the word
accuracy for normal speech slightly decreased.

Despite the worse performance of scenario (2), there is still an
important improvement: a 64.1% WER reduction for slow
speech and a 19.2% for fast speech at the expense of a small
WER increase for normal speech. The average WER for the
three speech rates (slow, average and fast) is reduced by a 32%
with respect to the baseline system.

5. CONCLUSIONS

In this paper we have reported the relation between different
speech parameters and the average speech rate of the utterance.
We have shown that a speech rate classifier (SRC) based on the

dynamic coefficients provides with very good results and can
be used to adapt the speech recogniser to the speech rate with a
slight increase of the average word error rate (1.6%) with
respect to the ideal case where all the utterances are correctly
classified.

The use of speech rate dependent models (SRDM) together
with the SRC reduces the word error rate a 64.1% for slow
speech and a 19.2% for fast speech at the expense of a small
WER increase for normal speech.

Our future work will concentrate on the improvement of both
the speech rate classifier and the compensation techniques. We
will also focus on the modification of  the decoding algorithm
to deal with speech rate related phenomena like the phone
elision problem.
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